Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have developed a class of spiropyran dyes and their fluorescence colors can be reversibly photoswitched from red to green, blue, or nearly dark, thus alternating between two colors. Such individual dyes emit either one color or the other but not both simultaneously. Nanoparticles enabled with these photoswitchable dyes, however, emit either one pure color or a combination of both colors because the nanoparticle fluorescence originates from multiple dyes therein. As a result, the nanoparticle shines >30 times brighter than state-of-the-art organic dyes such as fluorescein. Interestingly, these copolymer nanoparticles exhibit tunable nonspecific interactions with live cells, and nanoparticles containing properly balanced butyl acrylate and acrylamide monomers render essentially very little nonspecific binding to live cells. Decorated with HMGA1 protein, these optically switchable dual-color nanoparticles undergo endocytosis and unambiguously identify themselves from fluorescence interference including autofluorescence, thus enabling a new tool for live cell imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667703PMC
http://dx.doi.org/10.1021/ja805150gDOI Listing

Publication Analysis

Top Keywords

live cell
8
cell imaging
8
dyes emit
8
live cells
8
nanoparticles
5
dyes
5
single-chromophore-based photoswitchable
4
photoswitchable nanoparticles
4
nanoparticles enable
4
enable dual-alternating-color
4

Similar Publications

Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.

View Article and Find Full Text PDF

Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.

View Article and Find Full Text PDF

Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells.

View Article and Find Full Text PDF