Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A mixture of single side chains from white cabbage pectin were obtained by anion exchange chromatography after applying mild chemical conditions promoting beta-elimination. These pectin fragments were characterized by their molecular weight distribution, sugar composition, 13C-NMR, and MALDI-TOF-MS analysis. These analyses revealed that the large oligosaccharides released by beta-eliminative treatment were composed of alpha-1,5 linked arabinosyl residues with 2- and 3-linked alpha-arabinosyl side chains, and, or beta-1,4 linked galactosyl side chains. Fractions were tested for complement-fixing activity in order to determine their interaction with the complement system. These results strongly indicated that there was a minimal unit size responsible for the complement-fixing activity. Neutral pectin fragments (8 kDa) obtained from beta-elimination were inactive in the complement system, although they contained a sugar composition previously shown to be highly active. Larger pectin fragments (17 kDa) retained some activity, but much lower than polymers containing rhamnogalacturonan type 1 (RGI) structures isolated from the same source. This implied that structural elements containing multiple side chains is necessary for efficient complement-fixing activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.200800199DOI Listing

Publication Analysis

Top Keywords

side chains
20
complement-fixing activity
16
pectin fragments
12
single side
8
chains white
8
white cabbage
8
cabbage pectin
8
sugar composition
8
complement system
8
fragments kda
8

Similar Publications

Mechanistic analysis of lignocellulosic biomass saccharification by the filamentous fungus Talaromyces cellulolyticus.

Biosci Biotechnol Biochem

September 2025

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.

Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.

View Article and Find Full Text PDF

Optimizing bio-imaging with computationally designed polymer nanoparticles.

J Mater Chem B

September 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.

View Article and Find Full Text PDF

Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.

View Article and Find Full Text PDF

The poor foaming of egg yolks has long plagued the food industry. In this study, four egg yolk spheres (EYS) were prepared via acid- and alkaline pH-shift methods, and the main factors affecting the variation in their foaming capacity were determined. The tertiary structure of EYS under hydrogen bonding and electrostatic interactions unfolded in acidic shifts, exposing many functional groups, and refolded in basic shifts and exposed hydrophobic side chains.

View Article and Find Full Text PDF

Recombinant spider silk functionalized with a CD40 agonist shows improved capability to activate human B cells in vitro - A novel module for cancer immunotherapy.

Int J Biol Macromol

September 2025

Department of Protein Science, Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden. Electronic address:

This paper presents the generation and evaluation of a novel potential drug delivery platform for biologics, based on recombinant spider silk. Targeting CD40 for activation of antigen presenting cells, in order to overcome tumor induced T cell tolerance, have shown promising results in cell and animal models. However, further trials have gained limited results due to severe side reactions.

View Article and Find Full Text PDF