Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although the formation of 30-nm chromatin fibers is thought to be the most basic event of chromatin compaction, it remains controversial because high-resolution imaging of chromatin in living eukaryotic cells had not been possible until now. Cryo-electron microscopy of vitreous sections is a relatively new technique, which enables direct high-resolution observation of the cell structures in a close-to-native state. We used cryo-electron microscopy and image processing to further investigate the presence of 30-nm chromatin fibers in human mitotic chromosomes. HeLa S3 cells were vitrified by high-pressure freezing, thin-sectioned, and then imaged under the cryo-electron microscope without any further chemical treatment or staining. For an unambiguous interpretation of the images, the effects of the contrast transfer function were computationally corrected. The mitotic chromosomes of the HeLa S3 cells appeared as compact structures with a homogeneous grainy texture, in which there were no visible 30-nm fibers. Power spectra of the chromosome images also gave no indication of 30-nm chromatin folding. These results, together with our observations of the effects of chromosome swelling, strongly suggest that, within the bulk of compact metaphase chromosomes, the nucleosomal fiber does not undergo 30-nm folding, but exists in a highly disordered and interdigitated state, which is, on the local scale, comparable with a polymer melt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604964PMC
http://dx.doi.org/10.1073/pnas.0810057105DOI Listing

Publication Analysis

Top Keywords

30-nm chromatin
16
cryo-electron microscopy
12
chromatin fibers
12
mitotic chromosomes
12
chromosomes hela
8
hela cells
8
30-nm
6
chromatin
6
analysis cryo-electron
4
microscopy images
4

Similar Publications

Nucleosomes are proven to be the fundamental unit of chromosome structure. The stacking and folding of the nucleosome fibers within a chromosome is not fully understood. One of the reasons for the incomplete understanding of chromosome internal structure is that a nucleosome, about 11 nm in diameter, can not be resolved within the large chromatids (∼ 700 nm diameter) of a chromosome.

View Article and Find Full Text PDF

The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic.

View Article and Find Full Text PDF

Super-resolution microscopy has become an indispensable tool across diverse research fields, offering unprecedented insights into biological architectures with nanometer scale resolution. Compared with traditional nanometer-scale imaging methods such as electron microscopy, super-resolution microscopy offers several advantages, including the simultaneous labeling of multiple target biomolecules with high specificity and simpler sample preparation, making it accessible to most researchers. In this study, we introduce two optimized methods of super-resolution imaging: 4-fold and 12-fold 3D-isotropic and preserved Expansion Microscopy (4× and 12× 3D-ExM).

View Article and Find Full Text PDF

Background: In the twentieth century, the textbook idea of packaging genomic material in the cell nucleus and metaphase chromosomes was the presence of a hierarchy of structural levels of chromatin organization: nucleosomes - nucleosomal fibrils -30 nm fibrils - chromomeres - chromonemata - mitotic chromosomes. Chromomeres were observed in partially decondensed chromosomes and interphase chromatin as ~100 nm globular structures. They were thought to consist of loops of chromatin fibres attached at their bases to a central protein core.

View Article and Find Full Text PDF

A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin.

J Phys Chem B

October 2024

Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

The organization of chromatin is critical for gene expression, yet the underlying mechanisms responsible for this organization remain unclear. Recent work has suggested that phase separation might play an important role in chromatin organization, yet the molecular forces that drive chromatin phase separation are poorly understood. In this work we interrogate a molecular model of chromatin to quantify the driving forces and thermodynamics of chromatin phase separation.

View Article and Find Full Text PDF