Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs (miRNAs) play important roles in modulating gene expression at the posttranscriptional level. In postnatal oligodendrocyte lineage cells, the miRNA expression profile ("microRNAome") contains 43 miRNAs whose expression dynamically changes during the transition from A2B5(+) oligodendrocyte progenitor cells to premyelinating GalC(+) cells. The combination of microRNAome profiling with analyses of the oligodendrocyte transcriptome reveals a target bias for a class of miRNAs which includes miR-9. We show that miR-9 is downregulated during oligodendrocyte differentiation. In addition, miR-9 expression level inversely correlates with the expression of its predicted targets, among which is the peripheral myelin protein PMP22. We found that PMP22 mRNA but not protein is detectable in oligodendrocytes, whereas Schwann cells producing PMP22 protein lack miR-9. We demonstrate that miR-9 interacts with the 3' untranslated region of PMP22 and downregulates its expression. Our results support models in which miRNAs can act as guardians of the transcriptome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646797PMC
http://dx.doi.org/10.1523/JNEUROSCI.1932-08.2008DOI Listing

Publication Analysis

Top Keywords

expression
6
mir-9
5
identification dynamically
4
dynamically regulated
4
regulated microrna
4
microrna mrna
4
mrna networks
4
networks developing
4
developing oligodendrocytes
4
oligodendrocytes micrornas
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF