Charcot-Marie-Tooth disease type 1E (CMT1E) is an inherited autosomal dominant peripheral neuropathy caused by mutations in the peripheral myelin protein 22 (PMP22) gene. The identical leucine-to-proline (L16P) amino acid substitution in PMP22 is carried by the Trembler J (TrJ) mouse and is found in CMT1E patients presenting with early-onset disease. Peripheral nerves of patients diagnosed with CMT1E display a complex and varied histopathology, including Schwann cell hyperproliferation, abnormally thin myelin, axonal degeneration, and subaxonal morphological changes.
View Article and Find Full Text PDFAltered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing.
View Article and Find Full Text PDFNon-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.
View Article and Find Full Text PDFAbnormalities of the peripheral myelin protein 22 (PMP22) gene, including duplication, deletion and point mutations are a major culprit in Type 1 Charcot-Marie-Tooth (CMT) diseases. The complete absence of PMP22 alters cholesterol metabolism in Schwann cells, which likely contributes to myelination deficits. Here, we examined the subcellular trafficking of cholesterol in distinct models of PMP22-linked neuropathies.
View Article and Find Full Text PDFThe majority of hereditary neuropathies are caused by duplication of the peripheral myelin protein 22 (PMP22) gene. Therefore, mechanisms to suppress the expression of the PMP22 gene have high therapeutic significance. Here we asked whether the human PMP22 gene is a target for regulation by microRNA 29a (miR-29a).
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) diseases comprise a genetically heterogeneous group of hereditary peripheral neuropathies. Trembler J (TrJ) mice carry a spontaneous mutation in peripheral myelin protein 22 (PMP22) and model early-onset, severe CMT type 1E disease. Recent studies indicate that phospholipid substitution, or cholesterol-enriched diet, benefit myelinated nerves, however such interventions have not been tested in early-onset dysmyelinating neuropathies.
View Article and Find Full Text PDFThe absence of functional peripheral myelin protein 22 (PMP22) is associated with shortened lifespan in rodents and severe peripheral nerve myelin abnormalities in several species including humans. Schwann cells and nerves from PMP22 knock-out (KO) mice show deranged cholesterol distribution and aberrant lipid raft morphology, supporting an unrecognized role for PMP22 in cellular lipid metabolism. To examine the mechanisms underlying these abnormalities, we studied Schwann cells and nerves from male and female PMP22 KO mice.
View Article and Find Full Text PDFHereditary demyelinating neuropathies linked to peripheral myelin protein 22 (PMP22) involve the disruption of normal protein trafficking and are therefore relevant targets for chaperone therapy. Using a small molecule HSP90 inhibitor, EC137, in cell culture models, we previously validated the chaperone pathway as a viable target for therapy development. Here, we tested five commercially available inhibitors of HSP90 and identified BIIB021 and AUY922 to support Schwann cell viability and enhance chaperone expression.
View Article and Find Full Text PDFA common form of hereditary autosomal dominant demyelinating neuropathy known as Charcot-Marie-Tooth disease type 1A (CMT1A) is linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Although studies from animal models have led to better understanding of the pathobiology of these neuropathies, there continues to be a gap in the translation of findings from rodents to humans. Because PMP22 was originally identified in fibroblasts as growth arrest specific gene 3 (gas3) and is expressed broadly in the body, it was tested whether skin cells from neuropathic patients would display the cellular pathology observed in Schwann cells from rodent models.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2017
The authors are retracting this article. The article describes mice expressing wild-type human MATR3. However, since publication the authors have become aware that all of the lines of mice described express human MATR3 containing the F115C mutation.
View Article and Find Full Text PDFIntroduction: Patients with hereditary peripheral neuropathies exhibit characteristic deformities of the hands and feet and have difficulty ambulating. To examine to what extent neuropathic animals recapitulate these deficits, we studied trembler J (TrJ) mice, which model early-onset demyelinating neuropathy.
Methods: A cohort of 4-month-old female wild type and neuropathic mice were evaluated for locomotor measurements, neuromuscular function, and skeletal muscle proteolysis and morphometry.
Acta Neuropathol Commun
November 2016
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of upper and lower motor neurons. Mutations in the gene encoding the nuclear matrix protein Matrin 3 have been found in familial cases of ALS, as well as autosomal dominant distal myopathy with vocal cord and pharyngeal weakness. We previously found that spinal cord and muscle, organs involved in either ALS or distal myopathy, have relatively lower levels of Matrin 3 compared to the brain and other peripheral organs in the murine system.
View Article and Find Full Text PDFCompared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons.
View Article and Find Full Text PDFThis brief review of current research progress on Charcot-Marie-Tooth (CMT) disease is a summary of discussions initiated at the Hereditary Neuropathy Foundation (HNF) scientific advisory board meeting on November 7, 2014. It covers recent published and unpublished in vitro and in vivo research. We discuss recent promising preclinical work for CMT1A, the development of new biomarkers, the characterization of different animal models, and the analysis of the frequency of gene mutations in patients with CMT.
View Article and Find Full Text PDFChaperones, also called heat shock proteins (HSPs), transiently interact with proteins to aid their folding, trafficking, and degradation, thereby directly influencing the transport of newly synthesized molecules. Induction of chaperones provides a potential therapeutic approach for protein misfolding disorders, such as peripheral myelin protein 22 (PMP22)-associated peripheral neuropathies. Cytosolic aggregates of PMP22, linked with a demyelinating Schwann cell phenotype, result in suppression of proteasome activity and activation of proteostatic mechanisms, including the heat shock pathway.
View Article and Find Full Text PDFHaploinsufficiency of peripheral myelin protein 22 (PMP22) causes hereditary neuropathy with liability to pressure palsies, a peripheral nerve lesion induced by minimal trauma or compression. As PMP22 is localized to cholesterol-enriched membrane domains that are closely linked with the underlying actin network, we asked whether the myelin instability associated with PMP22 deficiency could be mediated by involvement of the protein in actin-dependent cellular functions and/or lipid raft integrity. In peripheral nerves and cells from mice with PMP22 deletion, we assessed the organization of filamentous actin (F-actin), and actin-dependent cellular functions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
Although major research efforts have focused on how specific components of foodstuffs affect health, relatively little is known about a more fundamental aspect of diet, the frequency and circadian timing of meals, and potential benefits of intermittent periods with no or very low energy intakes. The most common eating pattern in modern societies, three meals plus snacks every day, is abnormal from an evolutionary perspective. Emerging findings from studies of animal models and human subjects suggest that intermittent energy restriction periods of as little as 16 h can improve health indicators and counteract disease processes.
View Article and Find Full Text PDFPompe disease is a systemic metabolic disorder characterized by lack of acid-alpha glucosidase (GAA) resulting in ubiquitous lysosomal glycogen accumulation. Respiratory and ambulatory dysfunction are prominent features in patients with Pompe yet the mechanism defining the development of muscle weakness is currently unclear. Transgenic animal models of Pompe disease mirroring the patient phenotype have been invaluable in mechanistic and therapeutic study.
View Article and Find Full Text PDFCharcot--Marie-Tooth disease type 1A (CMT1A) is a hereditary peripheral neuropathy characterized by progressive demyelination and distal muscle weakness. Abnormal expression of peripheral myelin protein 22 (PMP22) has been linked to CMT1A and is modeled by Trembler J (TrJ) mice, which carry the same leucine to proline substitution in PMP22 as affected pedigrees. Pharmacologic modulation of autophagy by rapamycin in neuron-Schwann cell explant cultures from neuropathic mice reduced PMP22 aggregate formation and improved myelination.
View Article and Find Full Text PDFIt has been hypothesized that α-synuclein (αS) misfolding may begin in peripheral nerves and spread to the central nervous system (CNS), leading to Parkinson disease and related disorders. Although recent data suggest that αS pathology can spread within the mouse brain, there is no direct evidence for spread of disease from a peripheral site. In the present study, we show that hind limb intramuscular (IM) injection of αS can induce pathology in the CNS in the human Ala53Thr (M83) and wild-type (M20) αS transgenic (Tg) mouse models.
View Article and Find Full Text PDFWhile a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS) are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells.
View Article and Find Full Text PDFA large fraction of hereditary demyelinating neuropathies, classified as Charcot-Marie-Tooth disease type 1A, is associated with misexpression of peripheral myelin protein 22. In this study, we characterized morphologic and biochemical changes that occur with diseaseprogression in neuromuscular tissue of Trembler-J mice, a spontaneous rodent model of Charcot-Marie-Tooth disease type 1A. Using age-matched, 2- and 10-month-old, wild-type and Trembler-J mice, we observed neuromuscular deficits that progress from distal to proximal regions.
View Article and Find Full Text PDFThe peripheral nervous system (PNS) comprises of an extensive network of connections that convey information between the central nervous system (CNS) and peripheral organs. Long myelinated nerve fibers are particularly susceptible to age-related changes, as maintenance of the insulating glial membrane requires extensive synthesis and processing of many proteins. In rodent models, peripheral demyelination caused by genetic risk factors or by normal aging are attenuated by intermittent fasting (IF) or calorie restriction (CR) supporting a role for dietary intervention in preserving neural function.
View Article and Find Full Text PDF