Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this work was to explore the feasibility of preparing itraconazole hydrochloride to improve the solubility and dissolution rate. Itraconazole dihydrochloride was synthesized by bubbling anhydrous hydrogen chloride gas into the acetone suspension of itraconazole. Results of the elementary analysis gave the molecular formula of C(35)H(38)Cl(2)N(8)O(4).2HCl and its structure was confirmed by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Powder X-Ray diffraction (PXRD) suggested that a new crystalline form of the salt was formed. The morphology and mean size distribution study by scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirmed that the salt was dispersable nanoparticle aggregation. Aqueous solubility measurements showed that the solubility of the salt, its 1:1, 1:2 and 1:3 (w/w) physical mixtures with beta-cyclodextrin (beta-CD) was 6, 99, 236 and 388 times greater than itraconazole. More than 94% of itraconazole was dissolved out of the salt/beta-CD 1/3 physical mixture after 60min. The stability studies indicated that the physical mixture remained stable for 24 months in assay, the related substances and dissolution. Based on the present results, it is concluded that hydrochloride formation can significantly increase solubility and dissolution rate of itraconazole, and the formulation of itraconazole dihydrochloride/beta-CD (1/3) would be an environment-friendly, economic and practical alternative to the commercially available itraconazole capsules (Sporanox)

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2008.09.034DOI Listing

Publication Analysis

Top Keywords

solubility dissolution
12
dissolution rate
12
itraconazole
9
itraconazole dihydrochloride
8
rate itraconazole
8
physical mixture
8
solubility
5
preparation evaluation
4
evaluation itraconazole
4
dihydrochloride solubility
4

Similar Publications

Oil Well Stimulation of Dispersion-Penetration Agent and Plugging Removal Technology.

ACS Omega

September 2025

National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China.

Conventional acidizing struggles to remove complex, organic-rich scales in oil wells, and while strong organic solvents can help, their high cost and safety risks limit field use. To overcome these shortcomings, we developed a low-cost, safe permeability-enhanced-dispersion (PD) technique that first loosens and disperses the scale and then applies acid for thorough cleanup. The PD fluid (DL) contains a mutually soluble fatty alcohol amide phosphate dispersant (DL-F), ethanol, a surfactant blend, and a self-generating acid.

View Article and Find Full Text PDF

Objectives: Norvir oral powder [ritonavir (RTV)] employs polyvinylpyrrolidone/vinyl acetate as the polymer to formulate an amorphous solid dispersion. Its oral absolute bioavailability is 70% in the fasted state, and it has negative food effects. The aim of this study was to perform in vitro dissolution of Norvir powder and Wagner-Nelson deconvolution of data under fasted, moderate fat, and high fat conditions in order to elucidate the relevance of dissolution testing.

View Article and Find Full Text PDF

Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.

View Article and Find Full Text PDF

Objectives: Lycopene is a powerful antioxidant with diverse health benefits. However, it belongs to the Biopharmaceutics Classification System II; thus, it depicts poor water solubility and dissolution. Its lipophilic nature hinders the bioavailability of this drug.

View Article and Find Full Text PDF

Indomethacin is a poorly soluble weak acid and a widely used model drug in enabling formulations. When using microdialysis for sampling of indomethacin from a buffer containing calcium, we observed the formation of nanoparticles of a poorly water-soluble indomethacin calcium salt. The nanoparticles were not detected during solubility experiments where filtration had been used to separate the solid phase because the nanoparticles were unusually small in size, less than 2 nm in diameter as determined by DLS.

View Article and Find Full Text PDF