Solid-phase synthesis and evaluation of TAR RNA targeted beta-carboline-nucleoside conjugates.

Org Biomol Chem

State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100083, China.

Published: October 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Four types of beta-carboline-nucleoside conjugates were synthesized. The binding affinities of these beta-carboline-nucleoside conjugates , and to TAR RNA were evaluated by affinity capillary electrophoresis. The data of binding affinities to TAR RNA show that conjugates and are stronger binders than the parent compound . Computer modeling indicates that the beta-carboline-nucleoside conjugate can fit to the UCU three-nucleotide bulge region of TAR RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b809598aDOI Listing

Publication Analysis

Top Keywords

tar rna
16
beta-carboline-nucleoside conjugates
12
binding affinities
8
solid-phase synthesis
4
synthesis evaluation
4
tar
4
evaluation tar
4
rna
4
rna targeted
4
beta-carboline-nucleoside
4

Similar Publications

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

A single-cell, long-read, isoform-resolved case-control study of FTD reveals cell-type-specific and broad splicing dysregulation in human brain.

Cell Rep

September 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:

Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an Arteriviridae family enveloped RNA virus, is a major swine pathogen. Using yeast transformation-associated recombination (TAR) cloning, we efficiently generated infectious PRRSV and GFP-expressing clones, identifying transcription-regulating sequences as essential for stable foreign gene expression. Screening SARS-CoV-2 antivirals showed potent inhibition by the multitarget drug ribavirin, the polymerase inhibitors remdesivir and its metabolite GS-441524.

View Article and Find Full Text PDF

Human coronavirus OC43 (HCoV-OC43) is an endemic "common cold" coronavirus widely used to study fundamental aspects of coronavirus biology and to test therapeutic interventions. Recently, we used a yeast-based reverse genetics strategy to create recombinant HCoV-OC43 and fluorescent reporter viruses. We assembled a DNA copy of the HCoV-OC43 genome from six linear dsDNA fragments and a linearized yeast centromeric plasmid/bacterial artificial chromosome (YCpBAC) vector in using transformation-associated recombination (TAR).

View Article and Find Full Text PDF

HIV-1 latency remains a major barrier to viral eradication, and the mechanisms underlying the maintenance of proviral transcriptional silencing are not yet fully understood. Argonaute (Ago) proteins are well known for their roles in post-transcriptional gene silencing through microRNA-mediated pathways, but their involvement in transcriptional regulation, particularly in the context of HIV-1 infection, remains poorly characterized. Here, we demonstrate that Ago1 represses HIV-1 promoter activity across diverse latency models, independently of microRNA biogenesis pathways.

View Article and Find Full Text PDF