98%
921
2 minutes
20
We present a protocol for a novel method for identifying the targets of DNA-binding proteins in the genome of the yeast Saccharomyces cerevisiae. This is accomplished by engineering a DNA-binding protein so that it leaves behind in the genome a permanent mark -- a 'calling card' -- that provides a record of that protein's visit to that region of the genome. The calling card is the yeast Ty5 retrotransposon, whose integrase interacts with the Sir4 protein. If Sir4 is fused to a DNA-binding protein, it recruits the Ty5 integrase, which directs insertion of a Ty5 calling card into the genome. The calling card along with the flanking genomic DNA is harvested by inverse PCR and its genomic location is determined by hybridization of the product to a DNA microarray. This method provides a straightforward alternative to the 'ChIP-chip' method for determining the targets of DNA-binding proteins. This protocol takes approximately 2 weeks to complete.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2008.148 | DOI Listing |
Genes Brain Behav
October 2025
Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Major depressive disorder is a prevalent and debilitating psychiatric illness that produces significant disability. Clinical data suggest that the pathophysiology of depression is due, in part, to a dysregulation of inflammation and glutamate levels in the brain. The systemic administration of lipopolysaccharide (LPS) has been shown to induce depressive-like behaviors in mice.
View Article and Find Full Text PDFChembiochem
September 2025
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str. 5/2, 220084, Minsk, Belarus.
The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.
View Article and Find Full Text PDFJ Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFPhotochem Photobiol Sci
September 2025
Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.
The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.
View Article and Find Full Text PDFNat Commun
September 2025
Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016, Granada, Spain.
Circadian oscillations of gene transcripts rely on a negative feedback loop executed by the activating BMAL1-CLOCK heterodimer and its negative regulators PER and CRY. Although circadian rhythms and CLOCK protein are mostly absent during embryogenesis, the lack of BMAL1 during prenatal development causes an early aging phenotype during adulthood, suggesting that BMAL1 performs an unknown non-circadian function during organism development that is fundamental for healthy adult life. Here, we show that BMAL1 interacts with TRIM28 and facilitates H3K9me3-mediated repression of transposable elements in naïve pluripotent cells, and that the loss of BMAL1 function induces a widespread transcriptional activation of MERVL elements, 3D genome reorganization and the acquisition of totipotency-associated molecular and cellular features.
View Article and Find Full Text PDF