98%
921
2 minutes
20
CXC chemokine receptor (CXCR)4 is an HIV coreceptor and a chemokine receptor that plays an important role in several physiological and pathological processes, including hematopoiesis, leukocyte homing and trafficking, metastasis, and angiogenesis. This receptor belongs to the class A family of G protein-coupled receptors and is a validated target for the development of a new class of antiretroviral therapeutics. This study compares the interactions of three structurally diverse small-molecule CXCR4 inhibitors with the receptor and is the first report of the molecular interactions of the nonmacrocyclic CXCR4 inhibitor (S)-N'-(1H-benzimidazol-2-ylmethyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butene-1,4-diamine (AMD11070). Fourteen CXCR4 single-site mutants representing amino acid residues that span the entire putative ligand binding pocket were used in this study. These mutants were used in binding studies to examine how each single-site mutation affected the ability of the inhibitors to compete with (125)I-stromal-derived factor-1alpha binding. Our data suggest that these CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor. In addition, our results identified amino acid residues that are involved in unique interactions with two of the CXCR4 inhibitors studied. These data suggest an extended binding pocket in the transmembrane regions close to the second extracellular loop of the receptor. Based on site-directed mutagenesis and molecular modeling, several potential binding modes were proposed for each inhibitor. These mechanistic studies might prove to be useful for the development of future generations of CXCR4 inhibitors with improved clinical pharmacology and safety profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.108.049775 | DOI Listing |
Front Immunol
September 2025
Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
Cancer-associated fibroblasts (CAFs) are pivotal in shaping the immunosuppressive and chemoresistant tumor microenvironment (TME) of osteosarcoma (OS). This review explores how CAFs drive OS progression through paracrine signaling (e.g.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating malignancy characterized by profound lethality, aggressive local invasion, dismal prognosis, and significant resistance to existing therapies. Two critical biological features underpin the challenges in treating PDAC: extensive perineural invasion (PNI), the process by which cancer cells infiltrate and migrate along nerves, and a profoundly immunosuppressive, or "cold," tumor microenvironment (TME). PNI is not only a primary route for local tumor dissemination and recurrence but also a major contributor to the severe pain often experienced by patients.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer. Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France. vyacheslav.lehenkyi@uni
Bone metastasis most commonly occurs in castration-resistant prostate cancer (CRPC). The TRPV6 calcium channel is absent in healthy prostate tissue, but its expression increases considerably during cancer progression. We hypothesized that cancer cells induce TRPV6 expression de novo to directly benefit from tightly regulated calcium intake via TRPV6 while providing cancer cells with a selective advantage for metastasis in the calcium-abundant niche, such as bone.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2025
Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510100, China.
Pseudoxanthoma elasticum (PXE), caused by pathogenic variants in , is characterized by pathological ectopic calcification with poorly understood mechanisms and no effective therapies. To address this, we developed the first zebrafish model of human PXE by introducing the pathogenic point mutation ( , F2 generation) using the highly efficient zhyA3A-CBE5 cytosine base editor. Three mutant types (Type1-Type3, T1-T3) stratified by calcification severity, exhibited reduced levels of the calcification inhibitors vitamin K1 (VK1) and carboxylated matrix Gla protein (cMGP), which were inversely correlated with the severity of calcification.
View Article and Find Full Text PDFInt J Biol Sci
August 2025
Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China.
Neuroblastoma (NB) differentiation status critically influences prognosis and treatment response. Although differentiation therapy has shown clinical benefit, its efficacy remains limited. The molecular mechanisms driving NB differentiation are not fully understood.
View Article and Find Full Text PDF