Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The aim of this investigation was to quantitatively compare the novel positron emission tomography (PET) hypoxia marker 2-(2-nitroimidazol-1-yl)-N-(3[(18)F],3,3-trifluoropropyl)acetamide ([(18)F]EF3) with the reference hypoxia tracer [(18)F]fluoromisonidazole ([(18)F]FMISO).

Methods: [(18)F]EF3 or [(18)F]FMISO was injected every 2 days into two separate groups of rats bearing syngeneic rhabdomyosarcoma tumours. In vivo PET analysis was done by drawing regions of interest on the images of selected tissues. The resulting activity data were quantified by the percentage of injected radioactivity per gram tissue (%ID/g) and tumour to blood (T/B) ratio. The spatial distribution of radioactivity was defined by autoradiography on frozen tumour sections.

Results: The blood clearance of [(18)F]EF3 was faster than that of [(18)F]FMISO. The clearance of both tracers was slower in tumour tissue compared with other tissues. This results in increasing T/B ratios as a function of time post tracer injection (p.i.). The maximal [(18)F]EF3 tumour uptake, compared to the maximum [(18)F]FMISO uptake, was significantly lower at 2 h p.i. but reached similar levels at 4 h p.i. The tumour uptake for both tracers was independent of the tumour volume for all investigated time points. Both tracers showed heterogeneous intra-tumoural distribution.

Conclusions: [(18)F]EF3 tumour uptake reached similar levels at 4 h p.i. compared with tumour retention observed after injection of [(18)F]FMISO at 2 h p.i. Although [(18)F]EF3 is a promising non-invasive tracer, it is not superior over [(18)F]FMISO for the visualisation of tumour hypoxia. No significant differences between [(18)F]EF3 and [(18)F]FMISO were observed with regard to the intra-tumoural distribution and the extra-tumoural tissue retention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-008-0907-xDOI Listing

Publication Analysis

Top Keywords

tumour uptake
12
tumour
10
[18f]ef3
8
superior [18f]fmiso
8
[18f]ef3 [18f]fmiso
8
[18f]ef3 tumour
8
reached levels
8
[18f]fmiso
7
[18f]ef3 superior
4
[18f]fmiso pet-based
4

Similar Publications

Purpose: Black women with hormone receptor-positive (HR +) breast cancer are twice as likely as White women to have weakly HR + tumors (1-10% positive cells). Patients with weakly HR + tumors are less frequently prescribed ET and have 60% higher mortality than strongly HR + tumors (> 10% positive cells). We evaluated factors associated with ET prescription and self-reported use among Black women with HR + breast cancer.

View Article and Find Full Text PDF

Synthesis, preclinical evaluation and clinical application of a novel heterodimeric tracer Ga-pentixafor-c(RGDfK) for PET-CT imaging.

Eur J Nucl Med Mol Imaging

September 2025

Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.

Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.

Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.

View Article and Find Full Text PDF

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Prognostic value of multiparameter [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers for patients with advanced pancreatic cancer.

Eur J Nucl Med Mol Imaging

September 2025

Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.

Purpose: In this retrospective study, whether [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers can predict the progression-free survival (PFS) and overall survival (OS) of patients with advanced pancreatic cancer was investigated.

Methods: Fifty-one patients who underwent [Ga]Ga-DOTA-FAPI-04 PET/MR scans before first-line chemotherapy were recruited. Imaging biomarkers, including the maximum tumor diameter, minimum apparent diffusion coefficient (ADC), maximum and mean standardized uptake values (SUV and SUV), fibroblast activation protein- (FAP-) positive tumor volume (FTV and W-FTV) and total lesion FAP expression (TLF and W-TLF), were recorded for primary and whole-body tumors.

View Article and Find Full Text PDF

Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.

View Article and Find Full Text PDF