Optimal marking of threatened species to balance benefits of information with impacts of marking.

Conserv Biol

Commonwealth Environmental Research Facility in Applied Environmental Decision Analysis, School of Botany, University of Melbourne, VIC 3010, Australia.

Published: December 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marking animals so that they are uniquely identifiable provides information that may assist conservation efforts. Nevertheless, some methods used to mark animals can be harmful. We used mathematical methods to assess the trade-off between the impact of marking threatened species and the value of the information gained. We considered the case where 2 management strategies, each aiming to improve a species' survival rate, are implemented in an experimental phase. The results of the experiment were applied in a postexperimental management phase. We expressed the expected number of survivors in both phases mathematically, accounting for any mortality caused by the experiment, and determined the proportion of animals to mark to maximize this number. The optimal number of animals to mark increased with the number of individuals available for the experiment and with the number of individuals to be managed in the future. The optimal solution was to mark only 25% of the animals when there were 1000 individuals available for the experiment, the results were used to manage 2000 individuals, and marking caused mortality of 1%. Fewer animals were marked when there were fewer animals in either phase or when marking caused higher mortality. In the case of the Helmeted Honeyeater (Lichenostomus melanops cassidix), the optimal proportion to mark was <1 if the mortality rate was >0.15%-1%, with the threshold depending on the number of animals in the experimental and postexperimental phases. The trade-off between gaining more information about a species and possibly harming individuals of that species by marking them is difficult to assess subjectively. We show how to determine objectively the optimal proportion of animals to mark to enhance the management of threatened species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1523-1739.2008.00999.xDOI Listing

Publication Analysis

Top Keywords

threatened species
12
animals mark
12
animals
9
marking threatened
8
proportion animals
8
number animals
8
number individuals
8
individuals experiment
8
marking caused
8
fewer animals
8

Similar Publications

Study on Apoptosis of Various Tissues at Different Intervals after Death of Yangtze Sturgeon ().

Biopreserv Biobank

September 2025

Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, China.

The collection and preservation of postmortem genetic material from recently deceased animals of rare and endangered species represent a critical yet underexplored avenue in conservation biology. While extensive research has been conducted on the human postmortem interval (PMI), there is a notable gap in understanding the postmortem preservation of germplasm in endangered species. This study aimed to investigate the dynamics of apoptosis in various tissues of the Yangtze sturgeon at different postmortem time points, and to provide a reference for identifying the optimal time window for germplasm preservation in rare and endangered fish in the wild.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of Sauvagesia rhodoleuca (Ochnaceae) provides insights into its genome evolution and demographic history.

DNA Res

September 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.

View Article and Find Full Text PDF

Environmental stressor-induced functional and expression dynamics of glutathione S-transferase genes in bees.

Pestic Biochem Physiol

November 2025

College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,

As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.

View Article and Find Full Text PDF

Round-leaved sundew (Drosera rotundifolia L.) is a protected glacial relict plant inhabiting Sphagnum bogs, which are endangered habitats in Hungary. In 2020 and 2021 greyish mycelium growth was observed on the hibernacula of D.

View Article and Find Full Text PDF

Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.

View Article and Find Full Text PDF