Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p < or = 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2008.06.031DOI Listing

Publication Analysis

Top Keywords

polyaromatic hydrocarbons
8
bacterial community
8
birch clones
8
birch
6
birch betula
4
betula spp
4
spp associated
4
associated rhizoidal
4
rhizoidal bacteria
4
bacteria degradation
4

Similar Publications

Mechanochemical reduction of β-diketiminate (BDI) barium iodide precursors with K/KI resulted in the first barium inverse sandwich complexes containing the benzene dianion in yields of up to 54%. This most challenging isolation of highly reactive (BDI)Ba-(CH)-Ba(BDI) complexes, completes the family of heavier benzene inverse sandwich complexes and allows for a comparison of trends in the series from Mg, Ca, Sr to Ba. Syntheses, stabilities, structures, electronic states and reactivities of the full range are compared.

View Article and Find Full Text PDF

The emerging pollutants polycyclic aromatic compounds (PAH'S) bisphenol a (BPA), and phthalates impair immune system function: Effects on human macrophages.

Toxicol In Vitro

September 2025

Laboratorio de Biología y Química Atmosféricas. Instituto de Ciencias de la Atmósfera y Cambio Climático. Universidad Nacional Autónoma de México. CDMX, Mexico. Electronic address:

Human activity has led to the increment of diverse pollutants. Plastics have great practical value since they are present in everyday products. However, not only plastics have gained importance, but their plasticizers such as bisphenol A (BPA), phthalates and other chemicals such as the polyaromatic hydrocarbon compounds (PAHs) have described to impact in human and animal health because of its chronic exposure and that they are endocrine disruptors (EDs).

View Article and Find Full Text PDF

Electricity is an essential and critical component for contemporary life. An energy crisis is emerging worldwide because electricity demand and consumption exceeds production capacity. Lebanon a country that has suffered from consecutive wars in addition to a crippling financial crisis lacks the capacity to provide 24-h electricity supply.

View Article and Find Full Text PDF

FeNiMn invar alloy was produced via the polyol process, employing a polyvinyl alcohol (PVA) solution in varying weight ratios (50% and 66% PVA), and carbonized at different temperatures in argon (Ar) atmosphere to create a magnetic core-shell structure of FeNiMn@C. The structural, morphological, and magnetic characteristics of the prepared material were analyzed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) method, Fourier-transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM). The carbonization process applied to these samples enhances their suitability for the adsorption of weakly polar or nonpolar organic molecules.

View Article and Find Full Text PDF

Multiple epidemiological studies link cardiac dysfunction with increased levels of air pollution. While cellular mechanisms underlying such dysfunction are yet to be fully elucidated, a proposed mediator of this effect is phenanthrene, a 3-ringed polycyclic aromatic hydrocarbon (PAH). Here, we used ventricular myocytes freshly isolated from healthy female sheep (Ovis aries) to study the impact of acute phenanthrene exposure on cardiac electrophysiology and intracellular Ca cycling in a large mammalian model.

View Article and Find Full Text PDF