Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2444022PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002677PLOS

Publication Analysis

Top Keywords

protein folding
12
rna
9
interaction rna
8
chaperone type
8
passenger proteins
8
rna binding
8
folding
7
protein
5
proteins
5
protein solubility
4

Similar Publications

Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.

View Article and Find Full Text PDF

Targeting protein misfolding in Alzheimer's disease: The emerging role of molecular chaperones.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.

View Article and Find Full Text PDF

d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.

View Article and Find Full Text PDF

Intracellular trafficking of secretory and membrane proteins from the endoplasmic reticulum (ER) to the cell surface, via the secretory pathway, is crucial to the differentiated function of epithelial tissues. In the thyroid gland, a prerequisite for such trafficking is proper protein folding in the ER, assisted by an array of ER molecular chaperones. One of the most abundant of these chaperones, Glucose-Regulated-Protein-170 (GRP170, encoded by Hyou1), is a noncanonical hsp70-like family member.

View Article and Find Full Text PDF

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF