Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poleward declines in species diversity [latitudinal diversity gradients (LDG)] remain among the oldest and most widespread of macroecological patterns. However, their contemporary dynamics remain largely unexplored even though changing ecological conditions, including global change, may modify LDG and their respective ecosystems. Here, we examine temporal variation within a temperate Northwest Atlantic LDG using 31 years of annual fisheries-independent surveys and explore its dynamics in relation to a dominant climate signal [the wintertime North Atlantic Oscillation (NAO)] that varies interannually and alters the latitudinal gradient of Northwest Atlantic continental shelf bottom water temperatures. We found that the slopes of the annual LDG vary dramatically due to changes in geographic distributions of 100+ species, variations that are concealed within the cumulative, static LDG. These changes are strongly associated with changes in NAO sign and strength. This is the first illustration of temporal dynamics in a contemporary LDG and the first demonstration of the speed at which local environmental variations can alter an LDG. Our findings underscore the need to investigate factors that modify LDG separately from those that contribute to their origins.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1461-0248.2008.01216.xDOI Listing

Publication Analysis

Top Keywords

temporal dynamics
8
dynamics contemporary
8
modify ldg
8
northwest atlantic
8
ldg
7
contemporary latitudinal
4
latitudinal diversity
4
diversity gradient
4
gradient poleward
4
poleward declines
4

Similar Publications

The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Small glaciers situated in high mountainous areas are experiencing notable declines, characterized by unprecedented rates of ice loss in recent years. This study investigates the recent changes in surface elevation and mass loss occurring between 2010 and 2023 within the Alamkouh Glacier over three subperiods, one of the biggest glaciers in Iran and the Middle East. These assessments are derived from a combination of high-resolution LiDAR data in 2010 (with a spatial resolution of 20 cm) and multi-temporal surveys conducted using unmanned aerial vehicles (UAVs) in 2018, 2020, and 2023 (with spatial resolutions varied from 10 to 20 cm).

View Article and Find Full Text PDF

Synchrotron light sources are powerful platforms for cutting-edge, multidisciplinary research, with dozens currently in operation, construction or commissioning worldwide. It is widely recognized that different research areas have specific demands for source capabilities. For the majority of synchrotron facilities, delivering high-brightness, high-flux synchrotron radiation stably through high-current electron beams is the primary mode of operation.

View Article and Find Full Text PDF

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF