Assessing the impact of temperature on grape phenolic metabolism.

Anal Chim Acta

Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA.

Published: July 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study assessed the impact of fruit temperature on the phenolic metabolism of grape berries (Vitis vinifera L. cv. Merlot) grown under field conditions with controlled exposure to sunlight. Individual cluster temperatures were manipulated in situ. Diurnal temperature fluctuation was damped by daytime cooling and nighttime heating of clusters. Daytime-only and nighttime-only temperature controls were applied for comparison. Berry temperatures were recorded continuously to compare the chemical data. Samples collected at véraison indicated that damping the diurnal temperature fluctuation advanced the onset of ripening. Those berries were larger (double-damped: 0.753+/-0.015gberry(-1) vs control: 0.512+/-0.034gberry(-1)) and more colored than all others. Development of phenolic metabolites was followed by two reversed-phase high performance liquid chromatography methods and gel permeation chromatography. These methods provided information on anthocyanins, proanthocyanidins, flavonols, flavan-3-ol monomers, and polymeric material. Damping the diurnal temperature fluctuation reduced proanthocyanidin mean degree of polymerization (double-damped: 21.8+/-1.0 vs control: 28.0+/-1.7). Proanthocyanidin accumulation at véraison was linearly related to heat summation over the developmental period with nighttime heating yielding the highest concentration and daytime cooling yielding the lowest (night-heat: 1.46+/-0.13mgberry(-1) vs day-cool: 0.97+/-0.09mgberry(-1)). Damping the diurnal temperature fluctuation had a marked effect on the rate of fruit development whereas total heat summation had more of an effect on phenolic metabolism alone. The results provide insight on the direct effect of temperature on phenolic metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2007.11.029DOI Listing

Publication Analysis

Top Keywords

phenolic metabolism
16
diurnal temperature
16
temperature fluctuation
16
damping diurnal
12
temperature
8
temperature phenolic
8
daytime cooling
8
nighttime heating
8
chromatography methods
8
heat summation
8

Similar Publications

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.

View Article and Find Full Text PDF

Living with temperature changes: Salicylic acid at the crossroads of plant immunity and temperature resilience.

Sci Adv

September 2025

Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense.

View Article and Find Full Text PDF

Specialized plant metabolism, particularly phenolic compound production, contributes significantly to the functioning and resilience of mountain ecosystems. Livestock grazing can influence phenolic production, with its effects varying depending on microclimatic factors and soil conditions. Despite the ecological significance of this process, the impact of livestock grazing on phenolic production in alpine plants remains insufficiently explored.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF