Origin and early evolution of angiosperms.

Ann N Y Acad Sci

Department of Botany, University of Florida, Gainesville, FL 32611, USA.

Published: August 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contributions from paleobotany, phylogenetics, genomics, developmental biology, and developmental genetics have yielded tremendous insight into Darwin's "abominable mystery"--the origin and rapid diversification of the angiosperms. Analyses of morphological and molecular data reveal a revised "anthophyte clade" consisting of the fossils glossopterids, Pentoxylon, Bennettitales, and Caytonia as sister to angiosperms. Molecular estimates of the age of crown group angiosperms have converged on 140-180 million years ago (Ma), older than the oldest fossils (132 Ma), suggesting that older fossils remain to be discovered. Whether the first angiosperms were forest shrubs (dark-and-disturbed hypothesis) or aquatic herbs (wet-and-wild hypothesis) remains unclear. The near-basal phylogenetic position of Nymphaeales (water lilies), which may include the well-known fossil Archaefructus, certainly indicates that the aquatic habit arose early. After initial, early "experiments," angiosperms radiated rapidly (

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1438.005DOI Listing

Publication Analysis

Top Keywords

angiosperms
6
origin early
4
early evolution
4
evolution angiosperms
4
angiosperms contributions
4
contributions paleobotany
4
paleobotany phylogenetics
4
phylogenetics genomics
4
genomics developmental
4
developmental biology
4

Similar Publications

The tomato russet mite, Aculops lycopersici (Tryon), is a key pest of commercially grown tomatoes worldwide. Due to its minute size, its detection is often not timely for effective control. In this study, the approach of limiting A.

View Article and Find Full Text PDF

Masataka et al.'s cannabis gateway study misrepresents the 43.8% probability of cannabis users transitioning to illegal drugs as "rare," and misuses regression via the Table 2 Fallacy.

View Article and Find Full Text PDF

Wheat Maintains Stem Water Potential During Drought Stress Despite Declining Osmotic Potential.

Physiol Plant

September 2025

Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.

Plant water potential is one of the most frequently measured variables of plant water status. Stem water potential, often approximated by wrapping the leaves, is assumed to be more stable and a better measure of drought stress than leaf water potential. In wheat (Triticum aestivum L.

View Article and Find Full Text PDF

The OsbZIP35-COR1-OsTCP19 module modulates cell proliferation to regulate grain length and weight in rice.

Sci Adv

September 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.

Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.

View Article and Find Full Text PDF

Sterols are essential isoprenoid derivatives that contribute to membrane structure and function. In plants, they also serve as precursors to phytohormones and specialized metabolites important for development, defense, and health. Although the sterol biosynthetic pathway is considered well-characterized, we report the discovery of a plant-specific cytochrome -like protein, CB5LP, as a critical component of phytosterol biosynthesis.

View Article and Find Full Text PDF