Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.

Download full-text PDF

Source
http://dx.doi.org/10.1890/07-1543.1DOI Listing

Publication Analysis

Top Keywords

aboveground belowground
8
effects
8
single-tree harvesting
8
forest effects
8
live trees
8
soil sequestration
8
ratios soil
8
prior presence
8
trees
7
soil
7

Similar Publications

Effects of sediment deposition and interspecific competition on the growth and ecological stoichiometric characteristics of .

Ying Yong Sheng Tai Xue Bao

July 2025

Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

With as the competitor species, we set four sedimentation depths (0, 3, 6, and 12 cm) and four competition treatments (no competition, full competition, aboveground competition, and belowground competition) to assess the growth and stoichiometric traits of , a representative wetland plant in Dongting Lake. The results showed that both sedimentation and competition significantly affected the total biomass of . Moderate sedimentation (3-6 cm) facilitated biomass accumulation, whereas excessive sedimentation (12 cm) suppressed growth.

View Article and Find Full Text PDF

The semiarid northeast coast of Brazil harbours just less than 44,300 ha of mangroves, 4% of Brazilian total. Notwithstanding this relatively small area, these forests have high ecological and economic importance, sustaining traditional fisheries and protecting biodiversity, including many threatened species. They present unique biogeochemical characteristics resulting in distinct ecosystem functioning compared to mangroves located in humid areas.

View Article and Find Full Text PDF

Herbivory mediates the response of below-ground food webs to invasive grasses.

J Anim Ecol

August 2025

Community Ecology, Plant-Animal Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.

Below-ground food webs in grasslands are affected by both above-ground herbivory and invasive plant species. However, the combined effects of these factors on soil organisms and their interactions with plant communities remain poorly understood. We investigated how the invasive African lovegrass (ALG) influenced below-ground food webs in south-eastern Australian grasslands under different herbivory regimes.

View Article and Find Full Text PDF

As a major adaptation to climate change in European crop production, irrigation is constantly increasing, particularly in Mediterranean agroecosystems. However, changes in microclimatic conditions due to irrigation may affect agroecosystem components, including soil organisms, ground-dwelling arthropods and their associated ecological functions. This study analyses the short-term effects of irrigation on Mediterranean vineyard ecosystems during the summer drought period.

View Article and Find Full Text PDF

The impact of shade on whole-plant carbon allocation in a dominant East African tree sapling.

AoB Plants

August 2025

Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, 1664 N Virginia St., Reno, NV 89557, United States.

Plasticity in resource allocation can be beneficial for plants under stress. In savannas, tree-grass competition forces tree saplings growing in the grass layer to compete for water, nutrients, and light. Savanna tree saplings are also vulnerable to fire and herbivory, which may favour investment in storage belowground to support regrowth aboveground.

View Article and Find Full Text PDF