98%
921
2 minutes
20
Background: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology.
Methodology/principal Findings: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes.
Conclusions/significance: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2391289 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002344 | PLOS |
Metabolomics
September 2025
Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.
Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.
ACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States.
Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.
View Article and Find Full Text PDF