98%
921
2 minutes
20
Phloem-mobile signals play a major role in plant nutrition, development and communication. In the latter context, phloem-mobile RNAs have been associated with signalling between plant tissues. In this study, we focused on the identification of transcripts in the shoot phloem of the model plant Arabidopsis thaliana. To isolate transcripts expressed in phloem parenchyma cells and in companion cell-sieve element complexes, we used laser microdissection coupled to laser pressure catapulting (LMPC). Mobile transcripts in sieve elements were isolated from leaf phloem exudates. After optimization of sampling and fixation, RNA of high quality was isolated from both sources. The modifications to the RNA amplification procedure described here were well suited to production of RNA of sufficient yield and quality for microarray experiments. Microarrays hybridized with LMPC-derived phloem tissue or phloem sap RNA allowed differentiation between phloem-expressed and mobile transcript species. Using this set of phloem transcripts and comparing them with microarrays derived from databases of light, hormone and nutrient treatment experiments, we identified phloem-derived RNAs as mobile, potential long-distance signals. Our dataset thus provides a search criterion for phloem-based signals hidden in the complex datasets of microarray experiments. The availability of these comprehensive phloem transcript profiles will facilitate reverse-genetic studies and forward-genetic screens for phloem and long-distance RNA signalling mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2008.03555.x | DOI Listing |
Front Immunol
September 2025
College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China.
Introduction: Segmented filamentous bacteria (SFB) colonization dynamics are crucial for host immune regulation. Given this, the present study specifically examined the functions of SFB flagellin in bacterial adhesion, cellular internalization, and immune modulation.
Methods: and were engineered to express murine and rat SFB flagellin genes.
PLoS One
September 2025
Qingdao University Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong Province, China.
This study was designed to identify immune-related biomarkers associated with allergic rhinitis (AR) and construct a robust a diagnostic model. Two datasets (GSE5010 and GSE50223) were downloaded from the NCBI GEO database, containing 38 and 84 blood CD4 + T cell samples, respectively. To eliminate batch effects, the surrogate variable analysis (sva) R package (version 3.
View Article and Find Full Text PDFSci Prog
September 2025
Department of Cardiology, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China.
ObjectiveType 1 myocardial infarction (T1MI) is primarily caused by the formation of coronary thrombi, which leads to acute myocardial ischemia and hypoxia and is associated with high morbidity and mortality rates. However, the effects of thrombus-derived exosomes (TEs) on endothelial cell function remain unclear. The aim of this study was to investigate the interaction between lncRNA LOC101928697, which is enriched in TEs, and FUS proteins, as well as their impact on endothelial cell function.
View Article and Find Full Text PDFObesity (Silver Spring)
September 2025
College of Sport and Health, Guangxi Normal University, Guilin, People's Republic of China.
Objective: This study investigates the regulatory role of p53 on Lgals3 expression and its impact on preadipocyte differentiation, fatty acid synthesis, and oxidation in obesity.
Methods: Bioinformatics analysis of six obesity-related microarray datasets and single-cell RNA sequencing (scRNA-seq) data identified Lgals3 as a key obesity-associated gene. A high-fat diet (HF) mouse model was established to evaluate obesity-related phenotypes, including body weight, hepatic Lgals3 expression, adipose tissue pathology, blood lipid profiles, and glucose tolerance.
J Transl Int Med
June 2025
Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
Background And Objectives: Circular RNAs play a vital role in developing triple-negative breast cancer (TNBC). Likewise, the function of circRNAs in TNBC resistance to chemotherapy remains largely unknown. Here, we aimed to investigate whether circPLK1 has a biological efect on anthracycline resistance in TNBC.
View Article and Find Full Text PDF