98%
921
2 minutes
20
Biogenesis of the Golgi apparatus is likely mediated by the COPI vesicle coat complex, but the mechanism is poorly understood. Modeling of the COPI subunit betaCOP based on the clathrin adaptor AP2 suggested that the betaCOP C terminus forms an appendage domain with a conserved FW binding pocket motif. On gene replacement after knockdown, versions of betaCOP with a mutated FW motif or flanking basic residues yielded a defect in Golgi organization reminiscent of that occurring in the absence of the vesicle tether p115. Indeed, betaCOP bound p115, and this depended on the betaCOP FW motif. Furthermore, the interaction depended on E(19)E(21) in the p115 head domain and inverse charge substitution blocked Golgi biogenesis in intact cells. Finally, Golgi assembly in permeabilized cells was significantly reduced by inhibitors containing intact, but not mutated, betaCOP FW or p115 EE motifs. Thus, Golgi organization depends on mutually interacting domains in betaCOP and p115, suggesting that vesicle tethering at the Golgi involves p115 binding to the COPI coat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441675 | PMC |
http://dx.doi.org/10.1091/mbc.e07-12-1236 | DOI Listing |
Nat Commun
August 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
VCP/p97 regulates a wide range of cellular processes, including post-mitotic Golgi reassembly. In this context, VCP is assisted by p47, an adapter protein, and VCPIP1, a deubiquitylase (DUB). However, how they organize into a functional ternary complex to promote Golgi assembly remains unknown.
View Article and Find Full Text PDFCell Tissue Res
August 2025
Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
The settlement levels of indigenous bacteria show circadian rhythms in various regions of the rat alimentary tract. Numerous bacteria colonize between the mucosal folds of the ascending colon in rodents; however, the rhythm of bacteria colonizing the ascending colon remains to be clarified. Therefore, we first aimed to examine the diurnal changes in bacteria colonizing in the rat ascending colon.
View Article and Find Full Text PDFJ Cell Biol
October 2025
School of Biochemistry, University of Bristol, Bristol, England.
The secretion of extracellular matrix (ECM) proteins is vital to the maintenance of tissue health. One major control point of this process is the Golgi apparatus, whose dysfunction causes numerous connective tissue disorders. We therefore sought to investigate the role of two Golgi organizing proteins, GMAP210 and Golgin-160, in ECM secretion.
View Article and Find Full Text PDFCells
July 2025
Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare.
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Neurosciences, UCSD, La Jolla, CA.
Neuronal function relies on the precise spatial organization of intracellular membrane-bounded organelles involved in anabolism and Ca sequestration, such as the Golgi apparatus, mitochondria and the endoplasmic reticulum (ER), along with structures involved in catabolism, such as lysosomes. Despite their known roles in energy supply, calcium homeostasis, and proteostasis, our understanding of how the anabolism-linked organelles are structurally arranged within neurons remains incomplete. Due to the tremendous complexity in the morphologies and fine structural features and interwoven nature of these intracellular organelles, particularly the ER, our understanding of their structural organization is limited, particularly, with regard to quantitative assessments of their sites of interaction and accurate measures of their volumetric proportions inside of a single large neuron.
View Article and Find Full Text PDF