Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Comparative genomics of multiple related species is a powerful methodology for the discovery of functional genomic elements, and its power should increase with the number of species compared. Here, we use 12 Drosophila genomes to study the power of comparative genomics metrics to distinguish between protein-coding and non-coding regions. First, we study the relative power of different comparative metrics and their relationship to single-species metrics. We find that even relatively simple multi-species metrics robustly outperform advanced single-species metrics, especially for shorter exons (< or =240 nt), which are common in animal genomes. Moreover, the two capture largely independent features of protein-coding genes, with different sensitivity/specificity trade-offs, such that their combinations lead to even greater discriminatory power. In addition, we study how discovery power scales with the number and phylogenetic distance of the genomes compared. We find that species at a broad range of distances are comparably effective informants for pairwise comparative gene identification, but that these are surpassed by multi-species comparisons at similar evolutionary divergence. In particular, while pairwise discovery power plateaued at larger distances and never outperformed the most advanced single-species metrics, multi-species comparisons continued to benefit even from the most distant species with no apparent saturation. Last, we find that genes in functional categories typically considered fast-evolving can nonetheless be recovered at very high rates using comparative methods. Our results have implications for comparative genomics analyses in any species, including the human.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291194PMC
http://dx.doi.org/10.1371/journal.pcbi.1000067DOI Listing

Publication Analysis

Top Keywords

comparative genomics
12
single-species metrics
12
comparative gene
8
gene identification
8
drosophila genomes
8
power comparative
8
advanced single-species
8
discovery power
8
multi-species comparisons
8
metrics
7

Similar Publications

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

Introduction: Genetic testing for health-related purposes is now offered in some workplace wellness programs, with notable ethical, legal, and social implications. However, little is known about employee perspectives on workplace genetic testing (wGT).

Methods: We surveyed a large, diverse national sample of 2,000 employed adults (mean age=43 years; 51% female).

View Article and Find Full Text PDF

Introduction Deliberative democracy is an inclusionary approach to reaching consensus decision-making through participative and representative engagement. The Democratizing Education for Sickle Cell Disease Gene Therapy Project used a deliberative community engagement model to partner with patient advocacy and research community members within the field of sickle cell disease (SCD) gene therapy to create new, accessible patient education materials (PEMs) about SCD gene therapy. Objective Develop PEMs for sickle cell disease gene therapy and study the process of deliberative community engaged research Methods A study of the experiences of a multi-disciplinary group of participants including patients, patient advocates, health professionals, gene therapy researchers, industry and government members using a deliberative community engagement model to develop new PEMs.

View Article and Find Full Text PDF

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF