98%
921
2 minutes
20
The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop. This region in N-TIMP is known to be essential for inhibitory activity against the matrix metalloproteinases and suggests that this region is of equal importance for NTR PCOLCE1, although the specific functional activity of the NTR PCOLCE1 domain is still unknown. Dynamics observed within the structural core of NTR PCOLCE1 that are not observed in N-TIMP molecules suggest that although the two domains have a similar architecture, the NTR PCOLCE1 domain will show different thermodynamic properties on binding and hence the target molecule could be somewhat different from that observed for the TIMPs. ModelFree order parameters show that NTR PCOLCE1 has more flexibility than both N-TIMP-1 and N-TIMP-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b717901d | DOI Listing |
Mol Biosyst
May 2008
Department of Biosciences, University of Kent, Canterbury, Kent, UK.
The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop.
View Article and Find Full Text PDFJ Biol Chem
July 2003
Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden.
Procollagen C-proteinase enhancer (PCOLCE) proteins are extracellular matrix proteins that enhance the activities of procollagen C-proteinases by binding to the C-propeptide of procollagen I. PCOLCE proteins are built of three structural modules, consisting of two CUB domains followed by a C-terminal netrin-like (NTR) domain. While the enhancement of proteinase activity can be ascribed solely to the CUB domains, sequence homology of the NTR domain with tissue inhibitors of metalloproteinases suggest proteinase inhibitory activity for the NTR domain.
View Article and Find Full Text PDFGenomics
June 2000
Casey Eye Institute, Oregon Health Sciences University, Portland, Oregon, 97201-4197, USA.
A novel human Type I procollagen C-proteinase enhancer protein-like gene, PCOLCE2, was identified by sequencing an EST in the primary open-angle glaucoma (POAG) region on 3q21. The total cDNA encoded a 415-amino-acid protein that has 43% identity to the Type I procollagen C-proteinase enhancer protein (PCOLCE1). PCOLCE2 contains two CUB domains, which are thought to be involved in protein-protein interactions, and an NTR module.
View Article and Find Full Text PDF