Publications by authors named "Joni D Mott"

Breast cancer is a complex and multifactorial disease. Tumors have a heterogeneous microenvironment, which have multiple interactions with other cell types, greatly influencing the behavior of tumor cells and response to therapy. The 3D culture mimics the microenvironment better found in vivo and is more appropriated than the traditional 2D culture made from plastic to test the cellular response to drugs.

View Article and Find Full Text PDF

Background: The REversion-inducing Cysteine-rich protein with Kazal motif (RECK) is a well-known inhibitor of matrix metalloproteinases (MMPs) and cellular invasion. Although high expression levels of RECK have already been correlated with a better clinical outcome for several tumor types, its main function, as well as its potential prognostic value for breast cancer patients, remain unclear.

Methods: The RECK expression profile was investigated in a panel of human breast cell lines with distinct aggressiveness potential.

View Article and Find Full Text PDF

The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the 'stem/progenitor' cells that allow this repeated expansion and renewal.

View Article and Find Full Text PDF

The development of the mammary gland involves formation of a branched arboreal structure resulting from the penetration and proliferation of epithelial cells into the fat pad. The mammary cells invade by remodeling their surrounding extracellular matrix (ECM), which are rich in proteins, and glycans such as heparan sulfate proteoglycans (HSPGs). There is increasing literature on how the interaction between signaling by ECM and matrix metalloproteinases (MMPs) is relevant to morphogenetic and physiological contexts.

View Article and Find Full Text PDF

Epithelial cell invasion through the extracellular matrix (ECM) is a crucial step in branching morphogenesis. The mechanisms by which the mammary epithelium integrates cues from the ECM with intracellular signaling in order to coordinate invasion through the stroma to make the mammary tree are poorly understood. Because the cell membrane-bound matrix metalloproteinase Mmp14 is known to play a key role in cancer cell invasion, we hypothesized that it could also be centrally involved in integrating signals for mammary epithelial cells (MECs) to navigate the collagen 1 (CL-1)-rich stroma of the mammary gland.

View Article and Find Full Text PDF

Organization into polarized three-dimensional structures defines whether epithelial cells are normal or malignant. In a model of morphogenesis, we show that inhibiting key signaling pathways in human breast cancer cells leads to "phenotypic reversion" of the malignant cells. Using architecture as an endpoint, we report that, in all cases, signaling through Raf/MEK/ERK disrupted tissue polarity via matrix metalloproteinase9 (MMP9) activity.

View Article and Find Full Text PDF

The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop.

View Article and Find Full Text PDF

A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from preinvasive to invasive phenotype as it may occur "spontaneously" in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted basement membrane cultures.

View Article and Find Full Text PDF

Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) has important functions in maintaining genome stability via its role in mitosis. Because PLK1 is up-regulated in many invasive carcinomas, we asked whether it may also play a role in acquisition of invasiveness, a crucial step in transition to malignancy. In a model of metaplastic basal-like breast carcinoma progression, we found that PLK1 expression is necessary but not sufficient to induce invasiveness through laminin-rich extracellular matrix.

View Article and Find Full Text PDF

Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT).

View Article and Find Full Text PDF

The three mammalian transforming growth factor beta (TGF-beta) isoforms are each secreted in a latent complex in which TGF-beta homodimers are non-covalently associated with homodimers of their respective pro-peptide called the latency-associated peptide (LAP). Release of TGF-beta from its LAP, called activation, is required for binding of TGF-beta to cellular receptors, making extracellular activation a critical regulatory point for TGF-beta bioavailability. Our previous work demonstrated that latent TGF-beta1 (LTGF-beta1) is efficiently activated by ionizing radiation in vivo and by reactive oxygen species (ROS) generated by Fenton chemistry in vitro.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are endopeptidases that contribute to growth, development and wound healing as well as to pathologies such as arthritis and cancer. Until recently, it has been thought that MMPs participate in these processes simply by degrading extracellular matrix (ECM) molecules. However, it is now clear that MMP activity is much more directed and causes the release of cryptic information from the ECM.

View Article and Find Full Text PDF

The Era of Hope meeting addressed with a multidisciplinary approach the most critical issues in breast carcinogenesis. The issues that we summarize here include: a) the use of rodent models for the study of mammary gland development and breast tumorigenesis; b) the effects of stroma on mammary epithelial differentiation and malignant transformation; c) a further characterization of the interactions between steroid and growth factor receptors; d) the improvement of technologies for early detection of breast tumors and the establishment of their progression; and e) the development of vaccines as potential new therapies against specific tumor markers.

View Article and Find Full Text PDF