98%
921
2 minutes
20
Purpose: The goal of this work was to test the ability of oligonucleotide-based arrays to reproduce the results of focused bacterial artificial chromosome (BAC)-based arrays used clinically in comparative genomic hybridization experiments to detect constitutional copy number changes in genomic DNA.
Methods: Custom oligonucleotide (oligo) arrays were designed using the Agilent Technologies platform to give high-resolution coverage of regions within the genome sequence coordinates of BAC/P1 artificial chromosome (PAC) clones that had already been validated for use in previous versions of clone arrays used in clinical practice. Standard array-comparative genomic hybridization experiments, including a simultaneous blind analysis of a set of clinical samples, were conducted on both array platforms to identify copy number differences between patient samples and normal reference controls.
Results: Initial experiments successfully demonstrated the capacity of oligo arrays to emulate BAC data without the need for dye-reversal comparisons. Empirical data and computational analyses of oligo response and distribution from a pilot array were used to design an optimized array of 44,000 oligos (44K). This custom 44K oligo array consists of probes localized to the genomic positions of >1400 fluorescence in situ hybridization-verified BAC/PAC clones covering more than 140 regions implicated in genetic diseases, as well as all clinically relevant subtelomeric and pericentromeric regions.
Conclusions: Our data demonstrate that oligo-based arrays offer a valid alternative for focused BAC arrays. Furthermore, they have significant advantages, including better design flexibility, avoidance of repetitive sequences, manufacturing processes amenable to good manufacturing practice standards in the future, increased robustness because of an enhanced dynamic range (signal to background), and increased resolution that allows for detection of smaller regions of change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782565 | PMC |
http://dx.doi.org/10.1097/GIM.0b013e31816b4420 | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
Department of Biology, University of Kentucky, Lexington, KY 40506 USA.
The red-fronted brown lemur (Eulemur rufifrons) is an important species to the function of Madagascar's ecosystems, contributing to critical ecological processes such as seed dispersal. Given its ecological, as well as cultural, importance, genomic resources for E. rufifrons are valuable for understanding evolutionary history and informing conservation strategies.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDFAm J Clin Pathol
September 2025
Laboratory for Clinical Genomics and Advanced Technology (CGAT)-Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
Objective: Differentiating between the repertoire of immunoglobulin rearrangements is important in guiding diagnoses and management of B-cell lymphoma processes. A subset of these disease entities, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), can show distinct genomic profiles with a shared cell of origin. In this report, we describe a rare case in which differentiating between the immunoglobulin family of rearrangements (IGH, IGK, IGL) with optical genome mapping (OGM) helped revise the clinical suspicion of CLL.
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.
Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.
View Article and Find Full Text PDF