Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Redox-sensitive non-viral delivery systems exploit intracellular reducing environment to improve the efficacy of the delivery of nucleic acids by selectively releasing the cargo in the subcellular space. Bcl-2 overexpression is frequently observed in human cancers and is closely associated with increased resistance to chemotherapy and radiotherapy. One of the biochemical alterations accompanying Bcl-2 overexpression is the increase in cellular glutathione (GSH) levels. In this study, we hypothesize that such increase of GSH concentration will selectively enhance the transfection activity of redox-sensitive delivery systems in cells overexpressing Bcl-2. Transfection studies were conducted in MCF-7 mammary carcinoma cells and MCF-7 clones overexpressing Bcl-2. It was confirmed that Bcl-2 overexpression resulted in the expected increase in GSH concentration. Redox-sensitive complexes containing plasmid DNA, mRNA, antisense oligodeoxynucleotides, and siRNA exhibited selectively increased activity in cells overexpressing Bcl-2 compared to non-redox complexes. The effect of Bcl-2 overexpression on the selective enhancement of transfection was highly dependent on the type of the delivered nucleic acid, and was most pronounced for mRNA. This study shows that Bcl-2 overexpression can serve as a proxy redox stimulus to enhance the activity of all major classes of potential nucleic acid therapeutics, when delivered using redox-sensitive vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393550PMC
http://dx.doi.org/10.1016/j.biomaterials.2008.03.009DOI Listing

Publication Analysis

Top Keywords

bcl-2 overexpression
20
overexpressing bcl-2
12
proxy redox
8
redox stimulus
8
stimulus enhance
8
enhance activity
8
delivery systems
8
bcl-2
8
increase gsh
8
gsh concentration
8

Similar Publications

To explore the role and mechanism of the hypoxia-inducible factor-1 (HIF-1) pathway in rat retinal precursor R28 cell injury caused by the (E50K) mutation. This experimental study was conducted from November 2023 to October 2024. The retinas of 18-month-old wild-type (WT) mice and normal tension glaucoma mice with the (E50K) mutation were extracted for proteomic analysis.

View Article and Find Full Text PDF

Chrysin Attenuates Myocardial Cell Apoptosis in Mice.

Cardiovasc Toxicol

September 2025

Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, 510100, Guangdong, China.

Myocardial infarction (MI), induced by ischemia and hypoxia of the coronary arteries, presents as myocardial necrosis. Patients often experience intense, prolonged retrosternal pain that is unrelieved by rest or nitrate therapy and is frequently associated with high blood myocardial enzyme levels. Physical effort may exacerbate this anxiety, increasing the likelihood of life-threatening consequences such as arrhythmias, shock, or cardiac failure.

View Article and Find Full Text PDF

This study explores the mechanism of miR-19b-3p in bladder cancer (BCa) cell proliferation and apoptosis to provide the latest theoretical basis for miR-19b-3p to become a novel biomarker and therapeutic target for BCa. miR-19b-3p, lncRNA SNHG20, and HS3ST3B1 expressions in BCa tissues or cells were detected via RT-qPCR or Western blot. Cell proliferation was evaluated via CCK-8 and colony formation assays.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) is a leading cause of cancer deaths in women. Comprehensive molecular studies are required to understand OC pathogenesis. KRAS and NOXA genes are involved in tumorigenesis and disease progression.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a common malignancy often characterized by metastasis and poor prognosis. This study attempts to ascertain the anticancer impacts of theaflavin (TF) on CRC cells and examine the fundamental molecular mechanisms, focusing on the function of DDIT4 in CRC progression. This study utilized RNA sequencing for gene expression profiling, differential expression analysis, and Venn diagram analysis for overlapping genes.

View Article and Find Full Text PDF