Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

K(+) channels in the basolateral membrane of mouse cortical collecting duct (CCD) principal cells were identified with patch-clamp technique, real-time PCR, and immunohistochemistry. In cell-attached membrane patches, three K(+) channels with conductances of approximately 75, 40, and 20 pS were observed, but the K(+) channel with the intermediate conductance (40 pS) predominated. In inside-out membrane patches exposed to an Mg(2+)-free medium, the current-voltage relationship of the intermediate-conductance channel was linear with a conductance of 38 pS. Addition of 1.3 mM internal Mg(2+) had no influence on the inward conductance (G(in) = 35 pS) but reduced outward conductance (G(out)) to 13 pS, yielding a G(in)/G(out) of 3.2. The polycation spermine (6 x 10(-7) M) reduced its activity on inside-out membrane patches by 50% at a clamp potential of 60 mV. Channel activity was also dependent on intracellular pH (pH(i)): a sigmoid relationship between pH(i) and channel normalized current (NP(o)) was observed with a pK of 7.24 and a Hill coefficient of 1.7. By real-time PCR on CCD extracts, inwardly rectifying K(+) (Kir)4.1 and Kir5.1, but not Kir4.2, mRNAs were detected. Kir4.1 and Kir5.1 proteins cellularly colocalized with aquaporin 2 (AQP2), a specific marker of CCD principal cells, while AQP2-negative cells (i.e., intercalated cells) showed no staining. Dietary K(+) had no influence on the properties of the intermediate-conductance channel, but a Na(+)-depleted diet increased its open probability by approximately 25%. We conclude that the Kir4.1/Kir5.1 channel is a major component of the K(+) conductance in the basolateral membrane of mouse CCD principal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00288.2007DOI Listing

Publication Analysis

Top Keywords

principal cells
16
basolateral membrane
12
membrane mouse
12
ccd principal
12
membrane patches
12
kir41/kir51 channel
8
collecting duct
8
real-time pcr
8
inside-out membrane
8
intermediate-conductance channel
8

Similar Publications

Rationale: Chrysotoxine, a bibenzyl derivative from the stems of Dendrobium medicinal herbs, has recently emerged as a promising therapeutic candidate for cervical cancer. This study aimed to characterize chrysotoxine metabolites across multiple hepatocyte species and in rat urine.

Methods: Metabolites were identified and characterized using liquid chromatography coupled with benchtop Orbitrap high-resolution mass spectrometry (LC-Orbitrap-MS/MS) combined with Compound Discoverer software.

View Article and Find Full Text PDF

Immunohistochemical and molecular confirmation of West Nile Virus associated polioencephalomyelitis in a mule from Southern Brazil.

Microb Pathog

September 2025

Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Paraná, Brazil; Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine Universidade Estadual de Londrina, Paraná, Brazil. Electronic address: selwyn.h

West Nile fever is a zoonotic arboviral disease caused by the West Nile Virus (WNV), responsible for deaths in humans, mammals, and birds with associated neurological manifestations. All previous investigations of WNV Brazil were based primarily on serological and molecular analyses and in humans, equids, and birds in the northern and southeastern regions of the country. This study describes the pathological and molecular findings observed in a mule, from the state of Paraná, southern Brazil, that died during an outbreak involving equids with clinical manifestations of a neurological disease.

View Article and Find Full Text PDF

Ion channels in NK cells: signaling and functions.

J Leukoc Biol

September 2025

Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, México.

Ion channels are integral membrane proteins which facilitate rapid transport of small ions into and out of the cell and between organelles and cytosol. Cytolytic lymphocytes including natural killer (NK) cells principally kill virus-infected and cancer cells by releasing cytolytic granules within the immunological synapse, formed between target and effector cells. This process strongly depends on Ca2+ signaling, which in human NK cells is controlled by the phospholipase C (PLCγ)/inositol-1,4,5-triphospate receptor (IP3R)/calcium release-activated calcium channel (CRAC) axis.

View Article and Find Full Text PDF

Deep feature engineering for accurate sperm morphology classification using CBAM-enhanced ResNet50.

PLoS One

September 2025

School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.

Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.

View Article and Find Full Text PDF

The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.

View Article and Find Full Text PDF