98%
921
2 minutes
20
A rigorous method for finding the best-connected orthogonal communication channels, modes, or degrees of freedom for scalar waves between two volumes of arbitrary shape and position is derived explicitly without assuming planar surfaces or paraxial approximations. The communication channels are the solutions of two eigenvalue problems and are identical to the cavity modes of a double phase-conjugate resonator. A sum rule for the connection strengths is also derived, the sum being a simple volume integral. These results are used to analyze rectangular prism volumes, small volumes, thin volumes in different relative orientations, and arbitrary near-field volumes: all situations in which previous planar approaches have failed for one or more reasons. Previous planar results are reproduced explicitly, extending them to finite depth. Depth is shown not to increase the number of communications modes unless the volumes are close when compared with their depths. How to estimate the connection strengths in some cases without a full solution of the eigenvalue problem is discussed so that estimates of the number of usable communications modes can be made from the sum rule. In general, the approach gives a rigorous basis for handling problems related to volume sources and receivers. It may be especially applicable in near-field problems and in situations in which volume is an intrinsic part of the problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.39.001681 | DOI Listing |
JMIR Biomed Eng
August 2025
Cardiovascular Center and Divisions of Cardiology and Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital, No.7, Chung Shan S Rd, Taipei, 100225, Taiwan, 886 2-2312-3456.
Background: Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and support pervasive and long-term monitoring of personal health condition.
Objective: In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and electrocardiography (ECG) from smartwatch.
Methods: A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from 80 men and 82 women with average age of 63.
Turk J Pediatr
September 2025
Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.
Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.
Methods: Fifty-eight cwCF were included.
Front Public Health
September 2025
Institute of Physical Education, Sichuan University, Chengdu, China.
Objective: This study aimed to examine the relationship between physical activity volume and sleep duration in older adults, using objective monitoring data to investigate their non-linear association and threshold effects, thereby providing references for developing exercise programs to improve sleep duration.
Methods: The study used two consecutive waves of NHANES cross-sectional data (2011-2014) as the derivation cohort and NHANES 2005-2006 data as the validation cohort. Analysis of the derivation cohort included weighted univariate analysis, weighted multivariate logistic regression, and interpretable machine learning analysis.
Int J Surg
September 2025
Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: Functional dyspepsia (FD) is often comorbid with sleep disturbance. Transcutaneous auricular vagal nerve stimulation (taVNS) is a new and non-invasive therapeutic option. This study aimed to investigate its effects and possible mechanisms on FD with sleep disturbance.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
Surficial sediments are highly susceptible to physical, biological, and chemical processes, which can create significant heterogeneity, affecting the transmission and scattering of elastic waves. Non-invasive medical shear wave elastography (SWE) can potentially resolve shear speed heterogeneity in this delicate surficial layer. Samples were extracted from two mudflats in New Hampshire, USA, where sound speed and attenuation were measured 1 cm below the water-sediment interface using the core and resonance logger (200 kHz-1 MHz).
View Article and Find Full Text PDF