98%
921
2 minutes
20
Epicardium and epicardium-derived cells have been shown to be necessary for myocardial differentiation. To elucidate the function of podoplanin in epicardial development and myocardial differentiation, we analyzed podoplanin knockout mouse embryos between embryonic day (E) 9.5 and E15.5 using immunohistochemical differentiation markers, morphometry, and three-dimensional reconstructions. Podoplanin null mice have an increased embryonic lethality, possibly of cardiac origin. Our study reveals impairment in the development of the proepicardial organ, epicardial adhesion, and spreading and migration of the epicardium-derived cells. Mutant embryos show a hypoplastic and perforated compact and septal myocardium, hypoplastic atrioventricular cushions resulting in atrioventricular valve abnormalities, as well as coronary artery abnormalities. The epicardial pathology is correlated with reduced epithelial-mesenchymal transformation caused by up-regulation of E-cadherin, normally down-regulated by podoplanin. Our results demonstrate a role for podoplanin in normal cardiac development based on epicardial-myocardial interaction. Abnormal epicardial differentiation and reduced epithelial-mesenchymal transformation result in deficient epicardium-derived cells leading to myocardial pathology and cardiac anomalies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.21463 | DOI Listing |
Nat Commun
July 2025
Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
Reactivating the human epicardium post-cardiac injury holds promise for cardiac tissue regeneration. Despite successful differentiation protocols yielding pure, self-renewing epicardial cells from induced pluripotent stem cells (iPSCs), these cells maintain an embryonic, proliferative state, impeding adult epicardial reactivation investigation. We introduce an optimized method that employs mammalian target of rapamycin (mTOR) signaling inhibition in embryonic epicardium, inducing a quiescent state that enhances multi-step epicardial maturation.
View Article and Find Full Text PDFCell Biosci
January 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.
View Article and Find Full Text PDFCells
September 2024
Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA.
-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C () gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality.
View Article and Find Full Text PDFMesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice.
View Article and Find Full Text PDF-Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality.
View Article and Find Full Text PDF