Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough.

Methods: Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes.

Results: We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin alpha2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels.

Conclusions: Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.1140DOI Listing

Publication Analysis

Top Keywords

alpha2 chain
8
drug-induced readthrough
4
readthrough premature
4
premature codons
4
codons leads
4
leads stabilization
4
stabilization laminin
4
laminin alpha2
4
chain mrna
4
mrna cmd
4

Similar Publications

Endurance exercise significantly enhances energy expenditure with lipids serving as a crucial energy source for skeletal muscle during exercise. The adipocytokine Zinc-α2-glycoprotein (ZAG) in endurance exercise remains largely uncertain. This study utilized ZAG knockout and overexpression mice to investigate ZAG's role in regulating lipid metabolism in skeletal muscle during endurance exercise.

View Article and Find Full Text PDF

We previously developed SA-conf, a method designed to quantify backbone structural variability in protein targets. This approach is based on the HMM-SA structural alphabet, which enables efficient and rapid comparison of local backbone conformations across multiple structures of a given target. In this study, SA-conf (version for python2.

View Article and Find Full Text PDF

Effect of aquaculture water temperature on the physicochemical and functional properties of fish scale gelatins.

Int J Biol Macromol

August 2025

National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition,

The effects of culture temperatures on the preparation and properties of fish gelatins remain unclear. Herein, three gelatins (TScG: Tropical tilapia scale gelatin. GScG: Warm-water grass carp scale gelatin.

View Article and Find Full Text PDF

Laminins are basement membrane components that regulate a plethora of biological processes. Despite decades of research, the exact roles of laminins in different tissues and in organogenesis remain to be elucidated. Here, we investigated the function of laminin γ1 chain in heart, lung and other tissues by generating a mouse that lacks laminin γ1 in cells expressing SM22α (Tagln) (LMγ1 flox/SM22α Cre mouse, referred to as LMγ1KO).

View Article and Find Full Text PDF

Collagen type I (COL(I)) is a key component of the extracellular matrix (ECM) and is involved in cell signaling and migration through cell receptors. Collagen degradation produces bioactive peptides (matrikines), which influence cellular processes. In this study, we investigated the biological effects of nine most abundant, naturally occurring urinary COL(I)-derived peptides on human endothelial cells at physiological concentrations, using cell migration assays, mass spectrometry-based proteomics, flow cytometry, and AlphaFold 3.

View Article and Find Full Text PDF