98%
921
2 minutes
20
The Raman spectra of the cyclomaltoheptaose (beta-cyclodextrin, beta-CD) polyiodide complexes (beta-CD)(2).NaI(7).12H(2)O, (beta-CD)(2).RbI(7).18H(2)O, (beta-CD)(2).SrI(7).17H(2)O, (beta-CD)(2).BiI(7).17H(2)O and (beta-CD)(2).VI(7).14H(2)O (named beta-M, M stands for the corresponding metal) are investigated in the temperature range of 30-140 degrees C. At room temperature all systems show an initial strong band at 178 cm(-1) that reveals similar intramolecular distances of the disordered I(2) units (approximately 2.72 A). During the heating process beta-Na and beta-Rb display a gradual shift of this band to the final single frequency of 166 cm(-1). In the case of beta-Sr and beta-Bi, the band at 178 cm(-1) is shifted to the final single frequencies of 170 and 172 cm(-1), respectively. These band shifts imply a disorder-order transition of the I(2) units whose I-I distance becomes elongated via a symmetric charge-transfer interaction I(2)<--I3(-)-->I(2). The different final frequencies correspond to different bond lengthening of the disordered I(2) units during their transformation into well-ordered ones. In the Raman spectra of beta-V, the initial band at 178 cm(-1) is not shifted to a single band but to a double one of frequencies 173 and 165 cm(-1), indicating a disorder-order transition of the I(2) molecules via a non-symmetric charge-transfer interaction I(2)<--I3(-)-->I(2). The above spectral data show that the ability of I3(-) to donate electron density to the attached I(2) units is determined by the relative position of the different metal ions and their ionic potential q/r. The combination of the present results with those obtained from our previous investigations reveals that cations with an ionic potential that is lower than approximately 1.50 (Cs(+), Rb(+), Na(+), K(+) and Ba(2+)) do not affect the Lewis base character of I3(-). However, when the ionic potential of the cation is greater than approximately 1.50 (Li(+), Sr(2+), Cd(2+), Bi(3+) and V(3+)), the M(n+)...I3(-) interactions become significant. In the case of a face-on position of the metal (Sr(2+), Bi(3+)) relative to I3(-), the charge-transfer interaction is symmetric. On the contrary, when the metal (Li(+), Cd(2+), V(3+)) presents a side-on position relative to I3(-), the charge-transfer interaction is non-symmetric.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2007.11.013 | DOI Listing |
Inorg Chem
September 2025
College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia
Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.
View Article and Find Full Text PDFACS Omega
September 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico.
In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
A highly sensitive, selective, and simple method for detecting uranyl ions (UO) is crucial for human health and environmental safety. Amidoxime-based nanomaterials have been widely employed for UO detection, but their higher affinity for vanadium than UO limits their practical applications. Herein, a novel covalent organic polymer fluorescent probe (TT-COP) for UO detection was innovatively developed by a one-step Schiff-base condensation reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and 2,4,6-triformylphloroglucinol (Tp).
View Article and Find Full Text PDFLangmuir
September 2025
Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Photophysical studies on the interaction of small molecules with various forms of nucleic acids are attracting attention nowadays in order to delineate the molecular level mechanism of various biological processes occurring in vivo. Herein, we employed vivid steady-state and time-resolved spectroscopic techniques to elucidate the detailed characterization of the binding interaction of a biologically active cationic dye thioflavin T (ThT) with double and triple helical forms of RNA - A.U duplex and U.
View Article and Find Full Text PDF