Theory of the quantum critical fluctuations in cuprate superconductors.

Phys Rev Lett

Physics Department, University of California, Riverside, California 92507, USA.

Published: August 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The statistical mechanics of the time-reversal and inversion symmetry breaking order parameter, possibly observed in the pseudogap region of the phase diagram of the cuprates, can be represented by the Ashkin-Teller model. We add kinetic energy and dissipation to the model for a quantum generalization and show that the spectrum of the quantum-critical fluctuations is of the form postulated in 1989 to give the marginal Fermi-liquid properties. The model solved and the methods devised are likely to be of interest also to other quantum phase transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.067003DOI Listing

Publication Analysis

Top Keywords

theory quantum
4
quantum critical
4
critical fluctuations
4
fluctuations cuprate
4
cuprate superconductors
4
superconductors statistical
4
statistical mechanics
4
mechanics time-reversal
4
time-reversal inversion
4
inversion symmetry
4

Similar Publications

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02  K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.

View Article and Find Full Text PDF

The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).

View Article and Find Full Text PDF

While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.

View Article and Find Full Text PDF

We report direct spectroscopic evidence of correlation-driven Mott states in layered Nb_{3}Cl_{8} through combining scanning tunneling microscopy (STM) and dynamical mean-field theory. The Hubbard bands persist down to monolayer, providing the definitive evidence for the Mottness in Nb_{3}Cl_{8}. While the size of the Mott gap remains almost constant across all layers, a striking layer-parity-dependent oscillation emerges in the local density of states (LDOS) between even (n=2, 4, 6) and odd layers (n=1, 3, 5), which arises from the dimerization and correlation modulation of the obstructed atomic states, respectively.

View Article and Find Full Text PDF