98%
921
2 minutes
20
Two-electron oxidation of [{Pc(OEt)8}2TbIII]- [Pc(OEt)8=dianion of 2,3,9,10,16,17,23,24-octaethoxyphthalocyanine], which leads to a longitudinal contraction of the coordination space of the single-4f-ionic single-molecule magnet (SMM), resulted in a significant increase of the magnetization-reversal barrier energy and a remarkable upward temperature shift of chi'' peaks and chi'T drops. This is the first evidence that the dynamic magnetism of 4f SMMs can be controlled by a redox reaction on the ligand side without introducing any additional magnetic site or spin system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic700954t | DOI Listing |
Nano Lett
September 2025
Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.
We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nanoionic devices, crucial for neuromorphic computing and ionically enabled functional actuators, are often kinetically limited. In bilayer configurations, experimentally deconvoluting ion transport within individual layers from the kinetics of transfer across solid-solid interfaces, however, remains a challenge, hindering rational device optimization. Here, we extend the dynamic current-voltage (-) technique to a PrCeO/LaCeCuO (PCO/LCCO) bilayer system, enabling the isolation and quantification of distinct ion transport processes.
View Article and Find Full Text PDFNano Lett
September 2025
Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
Ampere-level electrocatalytic nitrate reduction to ammonia (eNRA) offers a carbon-neutral alternative to the Haber-Bosch process. However, its energy efficiency is critically hampered by the inherent conflict between the reaction and diffusion. Herein, we propose a reaction-diffusion-coupled strategy implemented on a well-tailored CuCoNiRuPt high-entropy alloy aerogel (HEAA) to simultaneously realize energy barrier homogenization and accelerate mass transport, endowing ampere-level eNRA with a high energy efficiency.
View Article and Find Full Text PDFNature
September 2025
The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK.
Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die.
View Article and Find Full Text PDF