Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We apply an interferometric optical detection scheme to image and track unlabeled single virions. Individual simian virus 40 virions and uninfectious virus-like particles were imaged on a glass substrate and on a supported membrane bilayer. Moreover, single unlabeled virions were tracked when bound to supported membrane bilayers via the viral receptor, the glycolipid GM1. The technology presented here promises to be generally applicable to studying the motion of unlabeled macromolecules on membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl070766yDOI Listing

Publication Analysis

Top Keywords

supported membrane
12
optical detection
8
single virions
8
membrane bilayers
8
label-free optical
4
detection tracking
4
tracking single
4
virions
4
virions bound
4
bound receptors
4

Similar Publications

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

In this article, "Cosmosis" introduces a newly coined metaphorical term that illustrates conceptual parallels between the physiological process of osmosis and the expansive dynamics of the cosmos. Designed as an interdisciplinary teaching framework, Cosmosis provides a novel way to link cellular homeostasis with cosmological principles such as entropy, spacetime curvature, and dark energy. By drawing on core physiological terms such as concentration gradients, osmotic pressure, aquaporins, and membrane selectivity, Cosmosis offers an analogy that may spark curiosity, support integrative thinking, and encourage cross-disciplinary dialogue in physiology and biochemistry education.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in fundamental cellular processes including cytokinesis, endosomal sorting, nuclear envelope reformation, and membrane repair. Membrane constriction and scission is driven by the filament-forming ESCRT-III complex and the AAA-ATPase VPS4. While ESCRT-III-driven membrane scission is generally established, the mechanisms governing the assembly and coordination of its twelve mammalian isoforms in cells remain poorly understood.

View Article and Find Full Text PDF

Exploring the antiangiogenic effects of Phospholipases A from Bothrops diporus venom.

Cell Tissue Res

September 2025

Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.

View Article and Find Full Text PDF

Although the surface micro-ornamentation of the scales within the skin of snakes has been the subject of many previous studies, there has been little work done on the spectacle, a protective (keratinised) goggle separated from the underlying cornea by a sub-spectacular space. The surface ultrastructure of the "Oberhäutchen" of the spectacle is examined in nine species of snakes (five aquatic and four terrestrial) using light and electron microscopy, micro-computed tomography and gel-based profilometry. Significant topographic differences in cell size (increases of between 5.

View Article and Find Full Text PDF