Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The intrinsic stiffness of DNA limits its ability to be bent and twisted over short lengths, but such deformations are required for gene regulation. One classic paradigm is DNA looping in the regulation of the Escherichia coli lac operon. Lac repressor protein binds simultaneously to two operator sequences flanking the lac promoter. Analysis of the length dependence of looping-dependent repression of the lac operon provides insight into DNA deformation energetics within cells. The apparent flexibility of DNA is greater in vivo than in vitro, possibly because of host proteins that bind DNA and induce sites of flexure. Here we test DNA looping in bacterial strains lacking the nucleoid proteins HU, IHF or H-NS. We confirm that deletion of HU inhibits looping and that quantitative modeling suggests residual looping in the induced operon. Deletion of IHF has little effect. Remarkably, DNA looping is strongly enhanced in the absence of H-NS, and an explanatory model is proposed. Chloroquine titration, psoralen crosslinking and supercoiling-sensitive reporter assays show that the effects of nucleoid proteins on looping are not correlated with their effects on either total or unrestrained supercoiling. These results suggest that host nucleoid proteins can directly facilitate or inhibit DNA looping in bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919473 | PMC |
http://dx.doi.org/10.1093/nar/gkm419 | DOI Listing |