Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Memory encoding is a critical brain function subserved by the hippocampus (HP) and mesial temporal lobe (mTL) structures. Visualization of mTL memory activation with BOLD fMRI is complicated by the presence of static susceptibility gradients in this region. Arterial spin labeled (ASL) perfusion fMRI offers an alternative approach not dependent on susceptibility contrast that instead suffers from lower intrinsic signal-to-noise ratio. An improved ASL perfusion fMRI approach combining pseudo-continuous ASL and a T(2)*-insensitive sequence (GRASE) with background suppression was compared to BOLD fMRI at 3 T during a scene encoding task known to activate the HP. Overall, an approximate sixfold sensitivity increase of ASL fMRI was achieved, with improved coverage in the anterior mTL, while suppression of the static tissue enhanced the stability of the ASL series by a factor of 2.4. Perfusion fMRI using this approach with 4 mm isotropic resolution yielded better localized and stronger group activation maps than BOLD fMRI at a standard resolution of 3 mm isotropic voxels. Increasing the resolution for BOLD to 2.5 mm isotropic produced stronger mTL and hippocampal activation in the group and individual subjects than the ASL technique, due to superior temporal resolution and reduced partial volume effects. Future improvements in ASL spatial and temporal resolution would allow the benefits of both approaches to be combined to further enhance the sensitivity for detecting mTL activation during memory encoding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871282PMC
http://dx.doi.org/10.1002/hbm.20366DOI Listing

Publication Analysis

Top Keywords

bold fmri
12
perfusion fmri
12
mesial temporal
8
temporal lobe
8
scene encoding
8
fmri
8
arterial spin
8
memory encoding
8
asl perfusion
8
fmri approach
8

Similar Publications

Since its introduction more than 30 years ago, the blood oxygenation level-dependent (BOLD) contrast remains the most widely used method for functional MRI (fMRI) in humans and animal models. The BOLD contrast is typically acquired with echo planar imaging (EPI) to obtain sensitization of the signal during the echo time (TE) to dynamic changes in deoxyhemoglobin content, while achieving high spatiotemporal resolution and full brain coverage. However, EPI-based fMRI also faces multiple shortcomings, including sensitivity to body motion, susceptibility-related signal dropouts, interference with multimodal sensors, and loud acoustic noise.

View Article and Find Full Text PDF

Decision making and learning processes together enable adaptive strategic behavior. Animal studies demonstrated the importance of subcortical regions in these cognitive processes, but the human subcortical contributions remain poorly characterized. Here, we study choice and learning processes in the human subcortex, using a tailored ultra-high field 7T functional MRI protocol combined with joint models.

View Article and Find Full Text PDF

Multivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns.

View Article and Find Full Text PDF

Temporal Sensitivity Under Photopic and Scotopic Conditions Across the Cortical Visual Hierarchy.

Invest Ophthalmol Vis Sci

September 2025

fMRI unit, Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem, Israel.

Purpose: Behavioral and electrophysiological studies have shown that vision is slower under scotopic conditions (dark, activating only rods) than photopic conditions (light, activating only cones). However, slower scotopic processing cannot be solely explained by findings that rod signals are slower than cone signals, and it is unknown whether temporal processing differences persist in cortex. Flickering stimuli have previously been used in functional MRI (fMRI) studies to probe photopic cortical temporal sensitivity.

View Article and Find Full Text PDF

The human brain dynamically adapts to hypoxia, a reduction in oxygen essential for metabolism. The brain's adaptive response to hypoxia, however, remains unclear. We investigated dynamic functional connectivity (FC) in healthy adults under acute hypoxia (FiO = 7.

View Article and Find Full Text PDF