Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exposure to hypoxia before hypoxia-ischemia (HI) confers substantial protection referred to as preconditioning (PC). We hypothesized that PC induces critical changes of genes related to apoptotic cell death to render the brain more resistant. PC hypoxia (8% O2, 36 degrees C, 3 h) was induced in rats on postnatal day (PND) 6, and the rats were killed at 0, 2, 8, and 24 h. Total RNA was extracted from cerebral cortex and analyzed using Affymetrix rat genome 230 2.0 array. PC induced significant changes in 906 genes at 0 h, 927 at 2 h, 389 at 8 h, and 114 at 24 h. Ontology analysis revealed significant alterations in genes involved in cell communication, signal transduction, transcription, phosphorylation, and transport. Genes involved in cell death/apoptosis as well as those related to brain development (cell differentiation, neurogenesis, organogenesis, blood vessel development) were overrepresented. A detailed analysis demonstrated that 77 significantly regulated genes were involved in apoptosis, specifically related to the Bcl-2 family, JNK pathway, trophic factor pathways, inositol triphosphate (PI3) kinase/Akt pathway, extrinsic or intrinsic pathway, or the p53 pathway. The study supports that the epidermal growth factor receptor family, mitogen-activated protein kinase phosphatases, and Bcl-2-related proteins and the PI3 kinase/Akt pathway may have roles in providing resistance in the developing central nervous system (CNS).

Download full-text PDF

Source
http://dx.doi.org/10.1203/pdr.0b013e3180332be4DOI Listing

Publication Analysis

Top Keywords

genes involved
12
involved cell
8
pi3 kinase/akt
8
kinase/akt pathway
8
genes
5
pathway
5
global gene
4
gene expression
4
expression developing
4
developing rat
4

Similar Publications

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.

View Article and Find Full Text PDF

Strigolactones modulate jasmonate-dependent transcriptional reprogramming during wound signalling in Arabidopsis.

J Appl Genet

September 2025

Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.

Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.

View Article and Find Full Text PDF

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF