Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

T-type Ca(2+) channels encoded by voltage-gated Ca(2+) channel (Ca(v)) 3.1, 3.2, and 3.3 genes play important physiological roles and serve as therapeutic targets for neurological and cardiovascular disorders. Currently there is no selective T-channel blocker. To screen for such a blocker, we developed three stable cell lines expressing human recombinant Ca(v)3.1, 3.2, or 3.3 channels and then examined their usefulness in high throughput screens. All three cell lines displayed an increase in intracellular Ca(2+) in response to changes in extracellular Ca(2+) as detected with Ca(2+)-sensitive dyes using a fluorometric imaging plate reader (FLIPR [Molecular Devices, Sunnyvale, CA] or FlexStation [Molecular Devices]). The signal-to-noise ratio was 2-4. Co-expression of Ca(v)3.2 with a mouse leak K(+) channel, which by virtue of being open at rest hyperpolarizes the cell membrane, blocked the fluorescent signal. Co-addition of KCl to these cells induced a Ca(2+) signal that was similar to that observed in the cell line expressing Ca(v)3.2 alone. These results confirm that the detection of intracellular Ca(2+) increase in cells expressing Ca(v)3.2 alone results from Ca(2+) entry through channels that are open at the resting membrane potential of each cell line (i.e., window currents). Testing known drugs on Ca(v)3 channels showed that block could be reliably detected using the FlexStation assay, FLIPR assay, or voltage clamp recordings using the IonWorks HT system (Molecular Devices). These results support the use of the FLIPR window current assay for primary drug screening and high throughput patch recordings for secondary screening of novel T-channel blockers.

Download full-text PDF

Source
http://dx.doi.org/10.1089/adt.2006.054DOI Listing

Publication Analysis

Top Keywords

high throughput
12
cell lines
8
intracellular ca2+
8
expressing cav32
8
ca2+
7
channels
5
cell
5
validation high
4
throughput screening
4
screening assays
4

Similar Publications

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF

The calibration of the JET x-ray spectrometer is presented. The absolute throughput, diffractor focusing, and instrument function of the spectrometer are presented, and the quality of the ion temperature measurement is re-assessed, particularly at the lower end. The addition of a second diffractor enables the simultaneous measurements of the spectra from H- and He-like nickel, which widens the spatial coverage of the core-ion temperature measurements for high-performance plasmas at a fixed Bragg angle range.

View Article and Find Full Text PDF

The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.

View Article and Find Full Text PDF

Background: Actinomyces graevenitzii is a relatively uncommon Actinomyces species, which is an oral species and predominantly recovered from respiratory locations [1,2]. It is a gram-positive anaerobic bacteria or microaerobic filamentation bacteria, which can induce pyogenic and granulomatous inflammation characterized by swelling and concomitant pus, sinus formation, and the formation of yellow sulfur granules. All tissues and organs can be infected; the most common type involves the neck and face (55%), followed by the abdominal and pelvic cavities (20%).

View Article and Find Full Text PDF

Exosomal Proteome from Hepatocellular Carcinoma Patient-Derived Xenograft Mice Serves as Identity of Liver Cancer.

J Proteome Res

September 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.

Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.

View Article and Find Full Text PDF