Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A recurrent neural network for the optimal control of a group of interconnected dynamic systems is presented in this paper. On the basis of decomposition and coordination strategy for interconnected dynamic systems, the proposed neural network has a two-level hierarchical structure: several local optimization subnetworks at the lower level and one coordination subnetwork at the upper level. A goal-coordination method is used to coordinate the interactions between the subsystems. By nesting the dynamic equations of the subsystems into their corresponding local optimization subnetworks, the number of dimensions of the neural network can be reduced significantly. Furthermore, the subnetworks at both the lower and upper levels can work concurrently. Therefore, the computation efficiency, in comparison with the consecutive executions of numerical algorithms on digital computers, is increased dramatically. The proposed method is extended to the case where the control inputs of the subsystems are bounded. The stability analysis shows that the proposed neural network is asymptotically stable. Finally, an example is presented which demonstrates the satisfactory performance of the neural network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tnn.2006.885040 | DOI Listing |