A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A recurrent neural network for hierarchical control of interconnected dynamic systems. | LitMetric

A recurrent neural network for hierarchical control of interconnected dynamic systems.

IEEE Trans Neural Netw

Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China.

Published: March 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A recurrent neural network for the optimal control of a group of interconnected dynamic systems is presented in this paper. On the basis of decomposition and coordination strategy for interconnected dynamic systems, the proposed neural network has a two-level hierarchical structure: several local optimization subnetworks at the lower level and one coordination subnetwork at the upper level. A goal-coordination method is used to coordinate the interactions between the subsystems. By nesting the dynamic equations of the subsystems into their corresponding local optimization subnetworks, the number of dimensions of the neural network can be reduced significantly. Furthermore, the subnetworks at both the lower and upper levels can work concurrently. Therefore, the computation efficiency, in comparison with the consecutive executions of numerical algorithms on digital computers, is increased dramatically. The proposed method is extended to the case where the control inputs of the subsystems are bounded. The stability analysis shows that the proposed neural network is asymptotically stable. Finally, an example is presented which demonstrates the satisfactory performance of the neural network.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tnn.2006.885040DOI Listing

Publication Analysis

Top Keywords

neural network
24
interconnected dynamic
12
dynamic systems
12
recurrent neural
8
proposed neural
8
local optimization
8
optimization subnetworks
8
subnetworks lower
8
network
6
neural
5

Similar Publications