Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this article, the effect of a d(CG) DNA dinucleotide repeat sequence on RNA polymerase II transcription is examined in yeast Saccharomyces cerevisiae. Our previous report shows that a d(CG)n dinucleotide repeat sequence located proximally upstream of the TATA box enhances transcription from a minimal CYC1 promoter in a manner that depends on its surrounding negative supercoiling. Here, we demonstrate that the d(CG)9 repeat sequence stimulates gene activity by forming a Z-DNA secondary structure. Furthermore, the extent of transcriptional enhancement by Z-DNA is promoter-specific and determined by its separation distance relative to the TATA box. The stimulatory effect exerted by promoter proximal Z-DNA is not affected by helical phasing relative to the TATA box, suggesting that Z-DNA effects transcription without interacting with the general transcription machinery by looping-out the intervening DNA. A nucleosome-scanning assay reveals that the d(CG)9 repeat sequence in the Z conformation blocks nucleosome formation, and it is found in the linker DNA with two flanking nucleosomes. This result suggests that Z-DNA formation proximally upstream of a promoter is sufficient to demarcate the boundaries of its neighboring nucleosomes, which produces transcriptionally favorable locations for the TATA box near the nucleosomal DNA-entry site and at dyad positions on the nucleosome. These findings suggest that Z-DNA formation in chromatin is a part of the "genomic code" for nucleosome positioning in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892989 | PMC |
http://dx.doi.org/10.1073/pnas.0611447104 | DOI Listing |