Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. The human major primary metabolic pathways of muraglitazar include acylglucuronidation, aliphatic/aryl hydroxylation, and O-demethylation. This study describes the identification of human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes involved in the in vitro metabolism of muraglitazar. [(14)C]Muraglitazar was metabolized by cDNA-expressed CYP2C8, 2C9, 2C19, 2D6, and 3A4, but to a very minimal extent by CYP1A2, 2A6, 2B6, 2C18, 2E1, and 3A5. Inhibition of the in vitro metabolism of muraglitazar in human liver microsomes, at a clinically efficacious concentration, by chemical inhibitors and monoclonal antibodies further supported involvement of CYP2C8, 2C9, 2C19, 2D6, and 3A4 in its oxidation. A combination of intrinsic clearance (V(max)/K(m)) and relative concentrations of each P450 enzyme in the human liver was used to predict the contribution of CYP2C8, 2C9, 2C19, 2D6, and 3A4 to the formation of each primary oxidative metabolite and to the overall oxidative metabolism of muraglitazar. Glucuronidation of [(14)C]muraglitazar was catalyzed by cDNA-expressed UGT1A1, 1A3, and 1A9, but not by UGT1A6, 1A8, 1A10, 2B4, 2B7, and 2B15. The K(m) values for muraglitazar glucuronidation by the three active UGT enzymes were similar (2-4 muM). In summary, muraglitazar was metabolized by multiple P450 and UGT enzymes to form multiple metabolites. This characteristic predicts a low potential for the alteration of the pharmacokinetic parameters of muraglitazar via polymorphic drug metabolism enzymes responsible for clearance of the compound or by coadministration of drugs that inhibit or induce relevant metabolic enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.106.011932DOI Listing

Publication Analysis

Top Keywords

metabolism muraglitazar
16
vitro metabolism
12
ugt enzymes
12
cyp2c8 2c9
12
2c9 2c19
12
2c19 2d6
12
2d6 3a4
12
muraglitazar
9
cytochrome p450
8
p450 udp-glucuronosyltransferase
8

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), and more specifically steatohepatitis may be associated with fat infiltration of skeletal muscles which is known as myosteatosis. Pan-peroxisome proliferator-activated receptor (PPAR) agonists have been shown to promote metabolic dysfunction-associated steatohepatitis (MASH) remission. However, the effect of PPAR agonists on myosteatosis remains to be determined.

View Article and Find Full Text PDF

The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation.

J Cardiovasc Pharmacol

November 2020

Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.

The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively.

View Article and Find Full Text PDF

Responding to concerns about the potential for increased risk of adverse cardiovascular outcomes, specifically myocardial infarction, associated with certain glucose-lowering therapies, the US Food and Drug Administration and the Committee for Medicinal Products for Human Use of the European Medicines Agency issued guidance to the pharmaceutical industry in 2008. Glucose-lowering therapies were granted regulatory approval primarily from smaller studies that have demonstrated reductions in glycated hemoglobin concentration. Such studies were overall underpowered and of insufficient duration to show any effect on cardiovascular outcomes.

View Article and Find Full Text PDF

Gemcabene, a late-stage clinical candidate, has shown efficacy for LDL-C, non-HDL cholesterol, apoB, triglycerides, and hsCRP reduction, all risk factors for cardiovascular disease. In rodents, gemcabene showed changes in targets, including apoC-III, apoA-I, peroxisomal enzymes, considered regulated through peroxisome proliferator-activated receptor (PPAR) gene activation, suggesting a PPAR-mediated mechanism of action for the observed hypolipidemic effects observed in rodents and humans. In the current study, the gemcabene agonist activity against PPAR subtypes of human, rat, and mouse were compared with known lipid lowering PPAR activators.

View Article and Find Full Text PDF

Increasing evidence shows that activation of peroxisome proliferator-activated receptors (PPARs) plays an essential role in the regulation of vascular endothelial function through a range of mechanisms, including non-metabolic. Among these, the PPAR-mediated activation of endothelial nitric oxide synthase (eNOS) appears to be of considerable importance. The regulated and sustained bioavailability of nitric oxide (NO) in the endothelium is essential to avoid the development of cardiovascular diseases such as hypertension or atherosclerosis.

View Article and Find Full Text PDF