98%
921
2 minutes
20
Intracerebral hemorrhage (ICH) is associated with high mortality and disability, and there is no widely approved clinical therapy. Poor outcome after ICH results mostly from a mass effect owing to enlargement of the hematoma and brain swelling, leading to displacement and disruption of brain structures. Cerebral mast cells (MC) are resident inflammatory cells that are located perivascularly and contain potent vasoactive, proteolytic, and fibrinolytic substances. We previously found pharmacological MC stabilization and genetic MC deficiency to be associated with up to 50% reduction of postischemic brain swelling in rats. Here, we studied the role of MC and MC stabilization in ICH using in vivo magnetic resonance imaging and ex vivo digital imaging for calculating brain edema and hematoma volume. In a rat ICH model of autologous blood injection into the basal ganglia, four groups of Wistar rats received either saline or sodium cromoglycate (MC stabilizer, two groups) or compound 48/80 (MC degranulator). Evaluated 24 h later, MC stabilization had resulted in highly significantly better neurologic scores (P<0.001), decrease mortality (P=0.002), less brain swelling (P<0.001), and smaller hematoma volume growth (P<0.001) compared with saline and compound 48/80. Moreover, to support our hypothesis, we induced ICH in MC-deficient rats and their wild-type littermates (WT). MC-deficient rats responded with significantly better neurologic scores (P<0.001), decrease mortality (0% versus 25%), less brain swelling (P<0.05), and smaller hematoma growth (P<0.05) than WT. The role of MC deserves a close evaluation as a potential target in the development of novel forms of ICH therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jcbfm.9600387 | DOI Listing |
Transl Stroke Res
September 2025
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.
View Article and Find Full Text PDFRadiol Case Rep
November 2025
Department of Neurosurgery, Hitachi General Hospital, 2-1-1 Jonancho, Hitachi 317-0077, Japan.
Epithelioid glioblastoma (eGBM) is a rare subtype of glioblastoma, generally associated with a poorer prognosis than conventional GBM despite maximum resection and standard chemoradiotherapy. Here, we report a case of a 78-year-old man who presented with left hemiplegia and a well-circumscribed right frontal lobe lesion on imaging, initially suspected to be a metastatic brain tumor. Surgical resection revealed a firm, clearly demarcated mass.
View Article and Find Full Text PDFNat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan.
Purpose: This study aimed to evaluate the prognostic significance of microvessel density (MVD), assessed by CD34 immunohistochemistry (IHC), and its correlation with radiological features and bevacizumab (BEV) treatment efficacy in newly diagnosed glioblastoma.
Methods: We retrospectively analyzed 41 patients with newly diagnosed glioblastoma. MVD was quantified using CD34 IHC, and patients were stratified into low and high MVD groups according to the cutoff value determined by receiver operating characteristic curve analysis (sensitivity, 76.
Int J Emerg Med
September 2025
Family Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
Background: Acute necrotizing encephalopathy is a rare but severe neurological disorder characterized by rapid onset of fever, altered mental status, seizures, and multifocal brain lesions, particularly involving the thalami and brainstem. Often triggered by viral infections, its pathogenesis involves a hyperinflammatory response, resulting in blood-brain barrier disruption and necrosis of neural tissue. While influenza and herpesviruses are common etiological agents, adenovirus is a less frequently reported cause.
View Article and Find Full Text PDF