Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Artemisinin-based combinations are judged the best treatments for multidrug-resistant Plasmodium falciparum malaria. Artesunate-mefloquine is widely recommended in southeast Asia, but its high cost and tolerability profile remain obstacles to widespread deployment. To assess whether dihydroartemisinin-piperaquine is a suitable alternative to artesunate-mefloquine, we compared the safety, tolerability, efficacy, and effectiveness of the two regimens for the treatment of uncomplicated falciparum in western Myanmar (Burma).

Methods: We did an open randomised comparison of 3-day regimens of artesunate-mefloquine (12/25 mg/kg) versus dihydroartemisinin-piperaquine (6.3/50 mg/kg) for the treatment of children aged 1 year or older and in adults with uncomplicated falciparum malaria in Rakhine State, western Myanmar. Within each group, patients were randomly assigned supervised or non-supervised treatment. The primary endpoint was the PCR-confirmed parasitological failure rate by day 42. Failure rates at day 42 were estimated by Kaplan-Meier survival analysis. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN27914471.

Findings: Of 652 patients enrolled, 327 were assigned dihydroartemisinin-piperaquine (156 supervised and 171 not supervised), and 325 artesunate-mefloquine (162 and 163, respectively). 16 patients were lost to follow-up, and one patient died 22 days after receiving dihydroartemisinin-piperaquine. Recrudescent parasitaemias were confirmed in only two patients; the day 42 failure rate was 0.6% (95% CI 0.2-2.5) for dihydroartemisinin-piperaquine and 0 (0-1.2) for artesunate-mefloquine. Whole-blood piperaquine concentrations at day 7 were similar for patients with observed and non-observed dihydroartemisinin-piperaquine treatment. Gametocytaemia developed more frequently in patients who had received dihydroartemisinin-piperaquine than in those on artesunate-mefloquine: day 7, 18 (10%) of 188 versus five (2%) of 218; relative risk 4.2 (1.6-11.0) p=0.011.

Interpretation: Dihydroartemisinin-piperaquine is a highly efficacious and inexpensive treatment of multidrug-resistant falciparum malaria and is well tolerated by all age groups. The effectiveness of the unsupervised treatment, as in the usual context of use, equalled its supervised efficacy, indicating good adherence without supervision. Dihydroartemisinin-piperaquine is a good alternative to artesunate-mefloquine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(06)68931-9DOI Listing

Publication Analysis

Top Keywords

falciparum malaria
16
dihydroartemisinin-piperaquine
10
efficacy effectiveness
8
artesunate-mefloquine
8
randomised comparison
8
alternative artesunate-mefloquine
8
uncomplicated falciparum
8
western myanmar
8
failure rate
8
day failure
8

Similar Publications

Can malaria rapid diagnostic tests be used to detect simian malaria?

Acta Trop

September 2025

Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health

Background: The increasing recognition of zoonotic malaria, particularly from Plasmodium species infecting non-human primates (NHP), poses significant diagnostic challenges. Performance of human malaria Rapid Diagnostic Tests (RDTs) has not been evaluated in simian malaria.

Methods: A total of 131 blood samples from NHP hosts with confirmed malaria were analyzed using 14 different commercially available RDTs, detecting the antigens P.

View Article and Find Full Text PDF

Residual Malaria Transmission in Western Burkina Faso: Vector Behavior, Insecticide Resistance, and the Efficacy Limits of Next-Generation LLINs.

Acta Trop

September 2025

Université Nazi BONI (UNB), Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Bobo-Dioulasso, Burkina Faso; Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso; Institut National Santé Publique, Centre MURAZ, Bobo-Di

An entomological surveillance was carried out in two districts of western Burkina Faso to assess the impact of mass-distributed next-generation long-lasting insecticidal nets (LLINs) (Piperonyl Butoxide (PBO) LLINs and Interceptor® G2) on Anopheles gambiae s.l. populations, focusing on insecticide resistance trends and residual malaria transmission patterns, along with their environmental and operational determinants.

View Article and Find Full Text PDF

Malaria, a protozoan parasitic disease caused by Plasmodium species, poses significant health risks in endemic regions and contributes to substantial morbidity and mortality. The intricate lifecycle of the parasite, coupled with the emergence of drug-resistant strains, has severely impacted the effectiveness of current anti-malarial treatments. In response, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 30 triazole derivatives designed based on molecular hybridisation technique, and physicochemical properties.

View Article and Find Full Text PDF

Small-molecule metabolic chemical probes are tailored chemical biology tools that are designed to detect and visualize biological processes within a cell or an organism. Nucleoside analogues are a subset of metabolic probes that enable the study of DNA synthesis, proliferation kinetics, and cell cycle progression. However, most available nucleoside analogue probes have been designed for use in mammalian cells, limiting their use in other species, where there are metabolic pathway differences.

View Article and Find Full Text PDF

Vector-borne parasitic diseases (VBPDs) represent a major global public health concern, with human African trypanosomiasis (HAT), Chagas disease, leishmaniasis, and malaria collectively threatening millions of people, particularly in developing regions. Climate change may further influence their transmission and geographic spread, increasing the global burden. As drug resistance continues to rise, there is an urgent need for novel therapeutic agents to expand treatment options and limit disease progression.

View Article and Find Full Text PDF