Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have examined the effects of glucose at high concentrations on the process of cell death induced by excessive increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) or oxidative stress in rat lymphocytes. The cell death elicited by the excessive increase in [Ca(2+)](i) seemed to be induced by an activation of Ca(2+)-dependent K(+) channels because the inhibitors for Ca(2+)-dependent K(+) channels attenuated the decrease in cell viability. Glucose at 30-50mM augmented the decrease in cell viability by the excessive increase in [Ca(2+)](i). It was not specific for glucose because it was the case for sucrose or NaCl, suggesting an involvement of increased osmolarity in adverse action of glucose. On the contrary, glucose protected the cells suffering from oxidative stress induced by H(2)O(2), one of reactive oxygen species. It was also the case for fructose or sucrose, but not for NaCl. The process of cell death induced by H(2)O(2) started, being independent from the presence of glucose. Glucose delayed the process of cell death induced by H(2)O(2). Sucrose and fructose also protected the cells against oxidative stress. The reactivity of sucrose to reactive oxygen species is lower than those of glucose and fructose. The order in the reactivity cannot explain the protective action of glucose. Glucose at high concentrations exerts reciprocal actions on the process of cell death induced by the oxidative stress and excessive increase in [Ca(2+)](i).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2006.05.004DOI Listing

Publication Analysis

Top Keywords

cell death
24
process cell
20
death induced
20
excessive increase
16
oxidative stress
16
increase [ca2+]i
12
induced h2o2
12
glucose
11
effects glucose
8
cell
8

Similar Publications

Background: T follicular helper (TFH) cell lymphoma is complex, and we hope to provide a new perspective for its diagnosis.

Methods: We analysed the immunophenotypes of 89 mature T-cell lymphomas, including 52 nodal lymphomas of TFH origin, as well as 32 benign lymph node samples and 30 healthy bone marrow samples, by flow cytometry (FCM).

Results: Among pan-T cell markers, CD4CD5CD3 is the typical pattern that distinguishes TFH lymphoma from other T-cell lymphomas.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Shigella type-III secretion system effectors counteract the induction of host inflammation and cell death.

EMBO J

September 2025

Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.

Many enteric bacterial pathogens deliver virulence effectors to counteract host innate immune responses, such as inflammation and cell death, and colonize the intestinal epithelium. However, host cells recognize the disruption of their innate immune signaling by bacterial effectors and induce alternative immune responses, collectively termed "effector-triggered immunity", to clear bacterial pathogens. Here, we describe a mechanism of cell death induction via effector-triggered immunity and the bacterial countermeasures of the pathogen Shigella flexneri.

View Article and Find Full Text PDF

Proteasome 20S beta 8 (PSMB8) as a metabolic switcher of neuronal ferroptosis in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

View Article and Find Full Text PDF

RNF128 regulates the adaptive metabolic response to fasting by modulating PPARα function.

Cell Death Differ

September 2025

Graduate Institute of Physiology, College of Biomedical Sciences, National Defense Medical University, Taipei, Taiwan, Republic of China.

Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial transcriptional factor that regulates fatty acid β-oxidation and ketogenesis in response to fasting. However, the mechanisms underlying PPARα function remain unclear. This study identified a novel PPARα-binding protein-RING finger protein 128 (RNF128)-that facilitates PPARα polyubiquitination, resulting in the degradation and suppression of PPARα function during fasting.

View Article and Find Full Text PDF