98%
921
2 minutes
20
Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when inactivated [corrected] promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)gamma is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARgamma knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARalpha is widely expressed in hematopoietic cells, but RARalpha knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARalpha differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARgamma exhibit a much more undifferentiated phenotype. Furthermore, loss of RARgamma abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARgamma ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARgamma is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121209 | PMC |
http://dx.doi.org/10.1084/jem.20052105 | DOI Listing |
Blood
September 2025
The University of Chicago, Chicago, Illinois, United States.
Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).
View Article and Find Full Text PDFPost-transcriptional RNA modifications, such as N6-methyladenosine (m6A) methylation and adenosine to inosine (A-to-I) editing, are critical regulators of hematopoietic stem cell (HSC) self-renewal and differentiation, yet their precise contributions to malignant transformation are not fully elucidated. In this study, we uncovered the epitranscriptomic landscape caused by knockdown of genes from the methyltransferase (METTL)-family in hematopoietic stem and progenitor cells (HSPCs). We identified both converging and distinct roles of METTL3 and METTL14, known members of the m6A writer complex, as well as orphan gene METTL13.
View Article and Find Full Text PDFStem Cells
September 2025
Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
The fate of hematopoietic stem cells (HSCs) is determined by a complex regulatory network supporting self-renewal and quiescence within a niche. Umbilical cord mesenchymal stromal cells (UC-MSCs) are classified as an alternative niche for the expansion of hematopoietic stem and progenitor cells (HSPCs). The molecular mechanisms by which UC-MSCs regulate hematopoiesis are still not fully understood.
View Article and Find Full Text PDFBioengineering (Basel)
July 2025
INSERM UMR-S-1310, University Paris Saclay, 94800 Villejuif, France.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool.
View Article and Find Full Text PDFElife
August 2025
Hematopoietic Stem Cell Biology and Medical Innovation (HSCBMI), Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
Myeloid-biased hematopoiesis is a well-known age-related alteration. Several possibilities, including myeloid-biased hematopoietic stem cell (HSC) clones, may explain this. However, the precise mechanisms remain controversial.
View Article and Find Full Text PDF