98%
921
2 minutes
20
Objective: To study the feasibility of osteogenic phenotype expression by human skin fibroblasts induced in polyglycolic acid (PGA) foams and the effect of tumor necrosis factor-alpha (TNF-alpha) on the expression of bone morphogenetic protein (BMP) receptors.
Methods: The fibroblasts were isolated, purified from human skin. (1) Fibroblasts were seeded onto PGA foams. The cell-PGA complexes were cultured in RCCS for 6 weeks, in the media of TNF-alpha (50 U/ml) and BMP-2 (0.1 microg/ml). 1 d, 3 and 6 weeks later, cells and extracellular matrix were investigated by electron microscopic and histochemistry observation respectively. Secretion of osteogenic markers were analyzed by biochemical methods. (2) Fibroblasts were seeded on the glass fragments or culture flasks and treated with TNF-alpha (50 U/ml) in different usage (one-time, all-time). The RT-PCR method and the immunohistochemistry fluorescence staining were used to examine the influence of TNF-alpha on the mRNA expression and the protein expression of the type I BMP receptors at 2, 4, 6, 8 d after treatment.
Results: Fibroblasts seeded on the PGA foams formed 3-dimensional matrix 3 weeks after seeding, which was demonstrated as osteo-tissue by tetracycline labeling and ARS staining. Cells secreted much more bone-specific alkaline phosphatase (B-AKP) and osteocalcin (OCN) into supernatant than the cells that were cultured in the media without TNF-a and BMP2. Eight days after all-time usage, the TNF-alpha (50 U/ml) increased the expression of the mRNA and protein of the type IB BMP receptor.
Conclusions: Fibroblasts on 3-D cell-foam structures can express osteoblastic phenotype under certain inducing conditions. The numerous fibroblasts in body would be a promising resource for cell seeds candidate of tissue- engineered bone. TNF-alpha provides the essential condition for BMP2's target effect on fibroblasts, and combined use of TNF-alpha and BMP2 is one of the regulating factors.
Download full-text PDF |
Source |
---|
Sci Rep
July 2025
School of Chemistry and Materials , Shandong University of Aeronautics, Binzhou City, 256600, Shandong, China.
Extensive research has been conducted to mitigate the hazards of coal mine dust. Dust suppressants are crucial for enhancing the dust and fall efficiency of water media. Currently, environmentally-friendly, functional, polymeric, and microbial dust suppressant, which represent new types of suppressants, are primarily in the experimental and exploratory stages.
View Article and Find Full Text PDFBiotechnol J
December 2022
Department of Molecular Biotechnology, TU Dresden, Dresden, Germany.
Today, the availability of methods for the activity-preserving and cost-efficient downstream processing of enzymes forms a major bottleneck to the use of these valuable tools in technical processes. A promising technology appears to be foam fractionation, which utilizes the adsorption of proteins at a gas-liquid interface. However, the employment of surfactants and the dependency of the applicability on individual properties of the target molecules are considerable drawbacks.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2018
Institute of Microbiology, Bulgarian Academy of Sciences, Acad G. Bonchev Str. Bl. 26, 1113, Sofia, Bulgaria.
Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry.
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2018
Institution of Science and Technology in Medicine, University of Keele, Stoke-on-Trent ST4 7QB, United Kingdom.
Polyglycolic acid (PGA) is a biocompatible and biodegradable polymer with high crystallinity. It is difficult to obtain PGA porous scaffolds with controllable morphology as well as outstanding mechanical properties without toxic solvents. The current study thus aimed to develop a novel melt-foaming strategy to prepare porous PGA scaffolds through the interaction between PGA molecules and supercritical carbon dioxide (scCO).
View Article and Find Full Text PDFBiomaterials
October 2016
Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, and the Department of Pediatric Surgery, Columbus, OH, USA. Electronic address:
The ability to deliver sustained-release, biologically active growth factors through custom designed tissue engineering scaffolds at sites of tissue regeneration offers great therapeutic opportunity. Due to the short in vivo half-lives of most growth factors, it is challenging to deliver these proteins to sites of interest where they may be used before being degraded. The application of subcritical CO2 uses gas-phase CO2 at subcritical pressures ranging from 41 to 62 bar (595-913 PSI) which avoids foaming by reducing the amount of CO2 dissolved in the polymer and maintains completely reversible plasticization.
View Article and Find Full Text PDF