98%
921
2 minutes
20
Zinquin (Zn(2+) selective fluorophore), when used to visualize intracellular Zn(2+), typically shows brightly fluorescent perinuclear endosome-like structures, presumably identifying Zn(2+) containing organelles. In this study, zinquin identified numerous and widespread sites of Zn(2+) compartmentalization in primary cultures of embryonic rat cortical neurons. Nuclear fluorescence, however, was absent. We labeled neuronal mitochondria with MitoTracker Green in the presence of zinquin and show that the fluorescent patterns of MitoTracker Green and zinquin were distinct and clearly different in both the perinuclear region and in processes. The mitochondrial compartment was much larger than the sum of the areas of zinquin fluorescence, as indicated by the small amount (<10% MitoTracker Green over zinquin) of overlap of MitoTracker Green on zinquin. Zinquin fluorescence was unaffected by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) treatment. The zinquin fluorescent objects were generally spherical in shape with a average diameter of about 0.6 mum. Most fluorescent objects, nearly two thirds on average, appeared to be docked, but both anterograde and retrograde movements were observed by time lapse image analysis. Although some fluorescent objects moved as much as 1 mum in 5 min, typical movements were smaller, usually 0.5 mum or less. Colchicine treatment caused striking aggregation of MitoTracker Green most noticeable in the perinuclear region. Zinquin fluorescence similarly showed reduced distribution throughout the cytoplasm, suggesting that zinquin fluorescent structures were associated with microtubules. Treatment with cytochalasin D had little noticeable effect on either the pattern of zinquin and MitoTracker Green fluorescence or their coincidence. Thus, numerous Zn(2+) sequestering organelles/structures are present in perinuclear regions and processes of cultured neurons and are sometimes found coincident with mitochondria. We demonstrated real time trafficking of sequestered Zn(2+), using zinquin fluorescence, apparently associated with an endosome-like compartment or protein complexes in the cytosol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2006.02.043 | DOI Listing |
J Alzheimers Dis
September 2025
IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
The "biological view" of Alzheimer's disease (AD) focuses on the role of plaques and tangles and excludes syndromes from the disease definition. However, cognitive syndromes are fundamental aspects of AD and are the ultimate target of treatments. Accordingly, the study of cognitive syndromes should remain a major goal of AD research.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.
Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.
View Article and Find Full Text PDFJ Comput Neurosci
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDF