Investigation of interaction of Leu-enkephalin with lipid membranes.

Colloids Surf B Biointerfaces

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Published: March 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enkephalins are peptides with morphine-like activity. To achieve their biological function, they must be transported from an aqueous phase to the lipid-rich environment of their membrane bound receptor proteins. In our study, zeta potential (ZP) method was used to detect the association of Leu-enkephalin and Leu-enkephalinamide with phospholipid liposomes constituted from egg-phosphatidylcholine (EPC), dioleoyl-phosphatidylethanolamine (DOPE), cholesterol (Chol), sphingomyelin (SM) as well as soybean phospholipid (SBPL). Transfer of the peptides over lipid membranes was examined by electrophysiology technique (ET) and fluorescence spectroscopy (FS), and further confirmed using 4-fluoro-7-nitrobenzofurazan (NBD-F) labeled Leu-enkephalin (NBD-F-enkephalin) with confocal laser scanning microscopy method (CLSM). Results of zeta potential showed that enkephalinamide associated with lipid membranes and gradually saturated on the membranes either hydrophobically or electrostatically or both. Data from electrophysiology technique indicated that Leu-enkephalin could cause transmembrane currents, suggesting the transfer of peptides across lipid membranes. Transfer examined by fluorescence spectroscopy implied that it could be separated into three steps, adsorption, transportation and desorption, which was afterward reaffirmed by confocal laser scanning microscopy. Transfer efficiencies of enkephalin across SBPL, EPC/DOPE, EPC/DOPE/SM, EPC/SM and EPC/Chol lipid bilayer membranes were evaluated with ET and CLSM experiments. Results showed that the addition of either sphingomyelin or cholesterol, or negatively charged lipid in lipid membrane composition could lower the transfer efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2006.02.005DOI Listing

Publication Analysis

Top Keywords

lipid membranes
16
zeta potential
8
transfer peptides
8
peptides lipid
8
electrophysiology technique
8
fluorescence spectroscopy
8
confocal laser
8
laser scanning
8
scanning microscopy
8
lipid
7

Similar Publications

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

Pulmonary surfactant protein SP-C regulates lipid vesicle uptake by alveolar type II cells and macrophages: Role of lipids, palmitoylation, and environment.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain. Electronic

Pulmonary surfactant protein C (SP-C) may play a key role in alveolar homeostasis by modulating vesicle uptake in alveolar cells. This study explores how SP-C regulates internalization of model unilamellar lipid vesicles by type II alveolar epithelial cells (AECII) and alveolar macrophages (AMϕ), focusing on the effect of lipid composition, palmitoylation state, and interactions with external stimuli like lipopolysaccharides (LPS) or the other hydrophobic surfactant protein SP-B. Using fluorescence-based techniques, we demonstrated that SP-C enhances vesicle uptake in a lipid-dependent manner.

View Article and Find Full Text PDF

Age-related changes in cardiolipin profile and functional consequences of altered fatty acid supply.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,

Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.

View Article and Find Full Text PDF

Molecular basis for regulation of the class I phosphoinositide 3-kinases (PI3Ks), and their targeting in human disease.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; University of Victoria Genome BC Proteomics Centre, Vi

The class I phosphoinositide 3-kinase pathway (PI3K) is a master regulator of cellular growth, and plays essential roles in controlling immune cell function, metabolism, chemotaxis and proliferation. Activation of class I PI3Ks generates the signalling lipid PIP that activates multiple pro-growth signalling pathways. Class I PI3Ks can be activated by multiple plasma membrane stimuli, including G-protein coupled receptors, Ras superfamily GTPases, and receptor tyrosine kinases.

View Article and Find Full Text PDF

Phosphorus limitation induces membrane lipid remodeling in aquatic phytoplankton.

Mar Environ Res

September 2025

Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; University of Chinese Academ

Phosphorus (P) is a critical limiting nutrient for phytoplankton growth in aquatic ecosystems. Under P-limitation, phytoplankton adapt by remodeling membrane lipids, replacing phospholipids (PLs) with non-P lipids such as sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and betaine lipids (BLs). This mechanism is essential for reevaluating the relationship between phosphate (PO) concentrations and primary productivity.

View Article and Find Full Text PDF