98%
921
2 minutes
20
Endocannabinoids work as retrograde messengers and contribute to short-term and long-term modulation of synaptic transmission via presynaptic cannabinoid receptors. It is generally accepted that the CB1 cannabinoid receptor (CB1) mediates the effects of endocannabinoid in inhibitory synapses. For excitatory synapses, however, contributions of CB1, "CB3," and some other unidentified receptors have been suggested. In the present study we used electrophysiological and immunohistochemical techniques and examined the type(s) of cannabinoid receptor functioning at hippocampal and cerebellar excitatory synapses. Our electrophysiological data clearly demonstrate the predominant contribution of CB1. At hippocampal excitatory synapses on pyramidal neurons the cannabinoid-induced synaptic suppression was reversed by a CB1-specific antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and was absent in CB1 knock-out mice. At climbing fiber (CF) and parallel fiber (PF) synapses on cerebellar Purkinje cells the cannabinoid-dependent suppression was absent in CB1 knock-out mice. The presence of CB1 at presynaptic terminals was confirmed by immunohistochemical experiments with specific antibodies against CB1. In immunoelectron microscopy the densities of CB1-positive signals in hippocampal excitatory terminals and cerebellar PF terminals were much lower than in inhibitory terminals but were clearly higher than the background. Along the long axis of PFs, the CB1 was localized at a much higher density on the perisynaptic membrane than on the extrasynaptic and synaptic regions. In contrast, CB1 density was low in CF terminals and was not significantly higher than the background. Despite the discrepancy between the electrophysiological and morphological data for CB1 expression on CFs, these results collectively indicate that CB1 is responsible for cannabinoid-dependent suppression of excitatory transmission in the hippocampus and cerebellum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673964 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4872-05.2006 | DOI Listing |
Pharmacol Biochem Behav
September 2025
Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran,
Methamphetamine (METH) is a highly addictive psychostimulant, and despite its widespread abuse, there are no FDA-approved treatments for METH use disorder (MUD). Cannabidiol (CBD), a non-psychoactive cannabinoid, has shown promise in reducing behaviors linked to psychostimulant use, including METH. However, the underlying neurobiological mechanisms remain unclear.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2025
Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA.
Exogenous cannabinoids have long been known to promote eating. However, the underlying mechanisms have not been completely elucidated, which is critical to understanding their utility. The orexin/hypocretin (OH) system of the lateral hypothalamus (LHA) has known anatomical, biochemical, and physiological interactions with the endocannabinoid system, and has an established role in promoting appetitive behavior; yet, it is still unknown if the OH system mediates food intake following cannabinoid administration.
View Article and Find Full Text PDFThe endocannabinoid (eCB) system-comprising cannabinoid receptors, eCBs (anandamide- AEA, 2-arachidonoylglycerol-2-AG) and related -acylethanolamines (NAEs; palmitoylethanolamide-PEA, and oleoylethanolamide-OEA), and metabolizing enzymes (e.g., fatty acid amide hydrolase; FAAH)-modulates nociceptive circuits in rodents.
View Article and Find Full Text PDFClin Toxicol (Phila)
August 2025
Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia.
Introduction: Seizures are a marker of severe toxicity following overdose. Research characterising toxicological seizures is limited. We aim to study toxicological seizures, causative agents, and recurrence.
View Article and Find Full Text PDFJ Oral Rehabil
September 2025
Université Paris Cité and Sorbonne Paris Nord, Montrouge, France.
Background: Burning Mouth Syndrome (BMS) is an idiopathic condition characterised by chronic oral burning pain without clinically evident lesions. Despite its prevalence and impact on quality of life, the pathophysiology of BMS remains poorly understood, limiting diagnostic and therapeutic options.
Objective: To systematically review histological, morphological and cytological changes in oral tissues of BMS patients, with a focus on epithelial cells and nerve fibres, to identify potential biomarkers and inform future research directions.