Has the code for protein translocation been broken?

Trends Biochem Sci

Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Ramat Aviv, Israel.

Published: April 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polypeptides chains are segregated by the translocon channel into secreted or membrane-inserted proteins. Recent reports claim that an in vivo system has been used to break the "amino acid code" used by translocons to make the determination of protein type (i.e. secreted or membrane-inserted). However, the experimental setup used in these studies could have confused the derivation of this code, in particular for polar amino acids. These residues are likely to undergo stabilizing interactions with other protein components in the experiment, shielding them from direct contact with the inhospitable membrane. Hence, it is our view that the "code" for protein translocation has not yet been deciphered and that further experiments are required for teasing apart the various energetic factors contributing to protein translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibs.2006.02.002DOI Listing

Publication Analysis

Top Keywords

protein translocation
12
secreted membrane-inserted
8
code protein
4
translocation broken?
4
broken? polypeptides
4
polypeptides chains
4
chains segregated
4
segregated translocon
4
translocon channel
4
channel secreted
4

Similar Publications

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.

View Article and Find Full Text PDF

Mouse intestine as a useful model for CFTR electrophysiology function analysis.

Methods Cell Biol

September 2025

Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy.

Cystic fibrosis (CF) is a genetic disorder primarily known for its severe impact on lung function, but it also significantly affects the digestive system, leading to complications such as intestinal blockages, malabsorption, inflammation, and microbial dysbiosis. The study of CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) effects on intestinal physiology is critical for developing new effective treatments. This work highlights the use of the mouse intestine as a valuable model for analyzing cellular electrophysiology and CFTR function.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chronic inflammatory pain represents a significant global health burden, seriously affecting the patient's quality of life. Jin-Tian-Ge Capsules (JTG), a substitute for natural tiger bone, has been approved in China for the treatment of osteoporosis, osteoarthritis and rheumatoid arthritis. Clinical observations show that JTG can mitigate chronic pain associated with the above bone-related diseases.

View Article and Find Full Text PDF

Crayfish IMD responds rapidly to WSSV infection and the activated IMD-Relish-AMPs pathway inhibits viral replication.

Fish Shellfish Immunol

September 2025

Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China. Electronic address:

One of the key innate immune pathways in invertebrates is the immune deficiency (IMD) signaling pathway, which effectively combats Gram-negative bacterial infections. In insects, the IMD pathway is involved in the defense against certain viral infections. However, the functional role of the IMD pathway in antiviral immunity remains incompletely characterized in crustaceans.

View Article and Find Full Text PDF