Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We hypothesised that hippocampal volume would be reduced in underweight anorexia nervosa (AN) and associated with impaired hippocampus-dependent cognitive function. Hippocampal and whole brain volumes were measured in 16 women with AN and 16 matched healthy women using magnetic resonance imaging (MRI) and a manual tracing method. Participants also completed the Doors and People Test of hippocampus-dependent memory and an IQ test. After adjustment for total cerebral volume, there was significant bilateral reduction in hippocampal volume in the AN group (8.2% right; 7.5% left). There was no evidence of impaired hippocampus-dependent cognitive function and no evidence of a relationship between hippocampal volume and clinical features of AN. The reduced hippocampal volume in anorexia nervosa is not associated with changes in cognitive function. To understand the cause and consequence of hippocampal size and function, it will be important to integrate endocrine, neuropsychological and neuroimaging studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2005.10.006DOI Listing

Publication Analysis

Top Keywords

hippocampal volume
20
cognitive function
16
anorexia nervosa
12
nervosa associated
8
impaired hippocampus-dependent
8
hippocampus-dependent cognitive
8
hippocampal
7
function
5
volume
5
cognitive
4

Similar Publications

Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.

Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.

View Article and Find Full Text PDF

Evidence suggests that working memory (WM) capacity decreases with age, resulting in cognitive decline. Given the link between aging and reduced hippocampal volume, this study examined whether and how hippocampal volume is associated with WM. 46 participants aged 65-85 years (Mage = 71.

View Article and Find Full Text PDF

Background: Previous studies indicate that hippocampal (subfield) and amygdala volumes may correlate with specific cognitive functions, coping strategies and emotion regulation. Here, we investigated associations between emotional processing and volumes of hippocampal subfields and amygdala. We focused on depressed patients since emotional dysregulation and hippocampal volume shrinkage are characteristic of them.

View Article and Find Full Text PDF

Background: This study investigates structural abnormalities in hippocampal subfield volumes and shapes, and their association with plasma CC chemokines in individuals with major depressive disorder (MDD).

Methods: A total of 61 patients with MDD and 65 healthy controls (HC) were recruited. All participants underwent high-resolution T1-weighted imaging and provided blood samples for the detection of CC chemokines (CCL2, CCL7, and CCL11).

View Article and Find Full Text PDF

Distinct neural mechanisms underlying cognitive difficulties in preterm children born at different stages of prematurity.

Neuroimage Clin

September 2025

Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Objectives: To examine associations between low cognitive-performance and regional-and network-level brain changes at ages 9-10 in very-preterm, moderately-preterm, and full-term children, and explore whether these alterations predict ASD/ADHD symptoms at age 12.

Methods: This longitudinal population-based study included 9-10-year-old U.S.

View Article and Find Full Text PDF